Math, asked by vedanthdev147, 5 months ago

show that
 \sin 3θ = 3 \sin θ -   {4}^{3} sinθ

Answers

Answered by Seafairy
265

Given :

\sin 3\theta = 3\sin\theta-4\sin^3\theta

To Find :

\text{Show that RHS=LHS }

Explanation :

We can prove the given equations by using some basic trigonometric identities alike :-

\cos^2 A = 1-\sin^2A

\sin (A+A)=\sin A \cos B + \cos A \sin B

\sin 2A = 2 \sin A \cos A

\cos 2A = \cos ^2 A - \sin ^2 A

Solution :

\sin 3\theta = \text {LHS}

\implies \sin (2\theta+\theta)

\implies \sin2\theta\cos \theta+\cos2\theta\sin\theta+(\cos^2\theta-\sin^2\theta)\sin\theta

(\because \sin 2A = 2 \sin A \cos A \:\:\&\:\:\cos 2A = \cos ^2 A - \sin ^2 A)

\implies 2\sin\theta\cos^2\theta+(1-\sin^2\theta-\sin^2\theta)\sin\theta

\implies 2\sin\theta\cos^2\theta+(1-2\sin^2\theta)\sin\theta

\implies 2\sin\theta\cos^2\theta+\sin\theta-2\sin^3\theta

\implies 2\sin\theta(1-\sin^2\theta)+\sin\theta-2\sin^2\theta

(\because \cos^2 A = 1-\sin^2A)

\implies 2\sin\theta-2\sin^3\theta+\sin\theta-2\sin^3\theta

\implies 3\sin\theta-4\sin^3\theta = \text{RHS}

Hence Proved.


Anonymous: mindblowing !!
Seafairy: thank you :)♡
Anonymous: wello
Anonymous: Perfectly explained
panchalpankaj406: thank u
panchalpankaj406: but aapne kisko comment kiya hai
panchalpankaj406: branliest ko aur uske niche vale answer ko
Answered by panchalpankaj406
5

Answer:

Refer to the attachment hope it's helpful for

Attachments:

Seafairy: Greatjob :)
panchalpankaj406: thank you
Anonymous: Good job !! :)♡
panchalpankaj406: thank you
Similar questions