Show that the area of an Issosceles triangle is A = a Sin 0 Cos 0.
where a is the length of
one of the two equal sides and is the measure
of one of two equal angles
Answers
Answer:
given that : ABC is an isosceles triangle
to prove : A = a^2 \sin\theta \cos\thetaA=a
2
sinθcosθ
proof : we know that the 2 sides are equal in the isosceles triangle
therefore ,
AB = BC
thus , \angle B = \angle C= \theta∠B=∠C=θ
(angle opposite to equal sides are equal )
now , in triangle ABC
sum of all the sides is 180 degree
therefore ,
\begin{gathered}\angle A + \angle B + \angle C = 180^\circ \\\\\angle A+ \theta +\theta = 180^\circ\\\\\angle A = 180 - 2\theta\end{gathered}
∠A+∠B+∠C=180
∘
∠A+θ+θ=180
∘
∠A=180−2θ
now , area of isosceles triangle
\begin{gathered}\frac{1}{2}\times AB \times AC \times \sin \angle A \\\\\frac{1}{2}\times a \times a \times \sin (180-2\theta)\\\\\frac{1}{2}\times a^2 \times \sin 2(90-\theta)\\\\\frac{1}{2}\times a^2 \times 2 \sin (90-\theta)\cos(90-\theta )\\\\\frac{1}{2}\times a^2 \times 2\cos\theta\sin\theta \\\\= a^2\cos\theta \sin\theta\\\\A = a^2\cos\theta \sin\theta\end{gathered}
2
1
×AB×AC×sin∠A
2
1
×a×a×sin(180−2θ)
2
1
×a
2
×sin2(90−θ)
2
1
×a
2
×2sin(90−θ)cos(90−θ)
2
1
×a
2
×2cosθsinθ
=a
2
cosθsinθ
A=a
2
cosθsinθ