show that the area of Rombus is equal to the area of two triangles made by its Digonal.
Answers
Answer:
\huge\purple{✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏}✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏
\orange{★★★★☆☆☆✯☆☆☆★★★★}★★★★☆☆☆✯☆☆☆★★★★
\huge\underline\green{✎﹏Question༉}
✎﹏Question༉
✯ Find area of triangle with side 24cm,26cmand 10cm.
\huge\underline\blue{✎﹏Solution༉}
✎﹏Solution༉
\underline\red{✧Given\:sides\:are;\:24cm\:26cm\:10cm}
✧Givensidesare;24cm26cm10cm
➥Semi-perimeter = a + b + c/2
\: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: \: \: \: = > \frac{24 + 26 + 10}{2} =>
2
24+26+10
\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > \frac{60}{2}=>
2
60
\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > 30cm=>30cm
\underline\red{✧Now,\:Area\: of \:\:triangle\:is;}
✧Now,Areaoftriangleis;
\begin{gathered}area = > \sqrt{s(s - a)(s - b)(s - c) } \\ = > \sqrt{30(30 - 24) (30 - 26) (30 - 10) } \\ = > \sqrt{30 \times 6 \times 4 \times 20} \\ = > \sqrt{30 \times 480} \\ = > \sqrt{1440 0} \\ \: \: \: \: \: \: \: \: \: \: = > \sqrt{120 \times 120} \\ \: = > 120\end{gathered}
area=>
s(s−a)(s−b)(s−c)
=>
30(30−24)(30−26)(30−10)
=>
30×6×4×20
=>
30×480
=>
14400
=>
120×120
=>120
\underline\red{❥So,\:The\:area\:of \:triangle\:is\:120cm}
❥So,Theareaoftriangleis120cm
\orange{★★★★☆☆☆✯☆☆☆★★★★}★★★★☆☆☆✯☆☆☆★★★★
\underline\pink{✫Hope,\:it\:Helps \:You࿐}
✫Hope,itHelpsYou࿐
\huge\purple{✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏}✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏