Math, asked by siddiquemaaz64, 3 months ago

show that the area of Rombus is equal to the area of two triangles made by its Digonal.​

Answers

Answered by akumar41864
1

Answer:

\huge\purple{✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏}✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

\orange{★★★★☆☆☆✯☆☆☆★★★★}★★★★☆☆☆✯☆☆☆★★★★

\huge\underline\green{✎﹏Question༉}

✎﹏Question༉

✯ Find area of triangle with side 24cm,26cmand 10cm.

\huge\underline\blue{✎﹏Solution༉}

✎﹏Solution༉

\underline\red{✧Given\:sides\:are;\:24cm\:26cm\:10cm}

✧Givensidesare;24cm26cm10cm

➥Semi-perimeter = a + b + c/2

\: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: \: \: \: = > \frac{24 + 26 + 10}{2} =>

2

24+26+10

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > \frac{60}{2}=>

2

60

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > 30cm=>30cm

\underline\red{✧Now,\:Area\: of \:\:triangle\:is;}

✧Now,Areaoftriangleis;

\begin{gathered}area = > \sqrt{s(s - a)(s - b)(s - c) } \\ = > \sqrt{30(30 - 24) (30 - 26) (30 - 10) } \\ = > \sqrt{30 \times 6 \times 4 \times 20} \\ = > \sqrt{30 \times 480} \\ = > \sqrt{1440 0} \\ \: \: \: \: \: \: \: \: \: \: = > \sqrt{120 \times 120} \\ \: = > 120\end{gathered}

area=>

s(s−a)(s−b)(s−c)

=>

30(30−24)(30−26)(30−10)

=>

30×6×4×20

=>

30×480

=>

14400

=>

120×120

=>120

\underline\red{❥So,\:The\:area\:of \:triangle\:is\:120cm}

❥So,Theareaoftriangleis120cm

\orange{★★★★☆☆☆✯☆☆☆★★★★}★★★★☆☆☆✯☆☆☆★★★★

\underline\pink{✫Hope,\:it\:Helps \:You࿐}

✫Hope,itHelpsYou࿐

\huge\purple{✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏}✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

Similar questions