Math, asked by llVelvetBlushll, 7 months ago

Show that the bisectors of the angles of a parallelogram enclose a rectangle.​

Answers

Answered by llAloneSameerll
4

\huge{\underline{\underline{\sf{\pink{Solution}}}}}

Since DC || AB and DA cuts them,we have

\angle \: A  + \:\angle \: D \:  =  \: 180\degree \:  \:  \:  \: (co - interior \: \angle \:s) \\

 ⇒  \frac{1}{2}  \:\angle \: A \:  +  \frac{1}{2} \angle \: D = 90\degree

 ⇒ \angle \: PAD \: +  \angle \: PDA \:  = 90\degree

 ⇒ \angle \: APD = 90\degree \:  \:  \:  \:  \: (\therefore \: sum \: of \: the \: \angle \: s \: of \: a \: \triangle \: is \:180 \degree )\\

 ⇒ \angle \: SQP \:  =90 \degree \:  \:  \:   \:  \:  \: \:  \: (vert. \: opp. \: \angle \: s). \\

Now,AD || BC and DC cuts them.

\therefore \: \angle \: D \:  + \: \angle \: C \:  =180 \degree \:  \:  \:  \:  \:  \: (co - interior \: \angle \: s) \\

 ⇒ \:  \frac{1}{2} \angle \: D \:  +  \frac{1}{2} \angle \: C = 90\degree \:

 ⇒ \angle \: QDC + \angle \: QCD \:  =90 \degree

 ⇒ \angle \: DQC =90 \degree \:  \:  \:  \:  \: [\therefore \: sum \: of \: the \: \angle \: s \: of \: a \: \triangle \: is \: 180\degree] \\

 ⇒ \angle \: PQR \:  =90 \degree.

similarly \: \angle \: QRS = 90\degree \: and \: \angle \: RSP = 90\degree \\

Thus,PQRS is a quadrilateral beach of whosr angles is 90°.

Hence,PQRS is a rectangle.

Similar questions