Show that the circles x² + y² - 8x + 6y - 23 = 0 and x² + y² - 2x - 5y + 16 = 0 are orthogonal.
Answers
Answered by
2
➼Question:-
------------------------------
•Show that the circles x² + y² - 8x + 6y - 23 = 0 and x² + y² - 2x - 5y + 16 = 0 are orthogonal.
------------------------------
➼Solution:-
First let us find the values of g₁, g₂,f₁ and f₂ from the equations by comparing the given equation with the general form of the circle
➨x² + y² + 2gx + 2fy + c = 0
⇒ x² + y² - 8x + 6y - 23 = 0
⇒ 2g₁ = -8 2f₁ = 6 c₁ = -23
⇒ g₁ = -4 f₁ = 3
⇒ x² + y² - 2x - 5y + 16 = 0
⇒ 2g₂ = -2 2f₂ = -5 c₂ = 16
⇒ g₂ = -1 f₂ = -5/2
Condition for orthogonal is
➨2 g₁ g₂ + 2 f₁ f₂ = c₁ + c₂
⇒ 2 (-4) (-1) + 2 (3) (-5/2) = -23 + 16
⇒ 8 - 15 = -7
⇒ - 7 = -7
So the given condition is satisfied.So the given circles are orthogonal.
--------------------------------
Similar questions