Math, asked by basudev4, 1 year ago

show that the cube of any positive integer is of form 9m or 9m+1 or 9m+8,where m is an integer

Answers

Answered by riteshbhapkarp5kw76
2
We know that any positive integer is of form n=3q,3q+1,3q+2.
Now cube each of these separately,you would get the answer.
Answered by Anonymous
4

Step-by-step explanation:



Let a be any positive integer and b = 3


a = 3q + r, where q ≥ 0 and 0 ≤ r < 3


∴ r = 0,1,2 .  


Therefore, every number can be represented as these three forms. There are three cases.


Case 1: When a = 3q,  


 


Where m is an integer such that m =    


Case 2: When a = 3q + 1,


a = (3q +1) ³  


a = 27q ³+ 27q ² + 9q + 1  


a = 9(3q ³ + 3q ² + q) + 1


a = 9m + 1  [ Where m = 3q³ + 3q² + q ) .



Case 3: When a = 3q + 2,


a = (3q +2) ³  


a = 27q³ + 54q² + 36q + 8  


a = 9(3q³ + 6q² + 4q) + 8


a = 9m + 8


Where m is an integer such that m = (3q³ + 6q² + 4q)  


Therefore, the cube of any positive integer is of the form 9m, 9m + 1, or 9m + 8.


Hence, it is proved .



THANKS



#BeBrainly


Similar questions