show that the cube of any positive integer is of the form 4 m , 4 m + 1 , 4 m + 3
Answers
Let a be positive integer and b=2. Then by E.D.A
a=4q+r where 0<r<4
a^3= 64q^3+r^3+48q^2r+12qr^2
Case 1 =
a^3=64q^3
a^3=4(16q^3)
a^3=4m where m=16q^3
Case 2 = when r=1
a^3= 64q^3+48q^2+12q+1
a^3=4(16q^3+12q^2+3q)+1
a^3=4m+1 where m=16q^3+12q^2+3q
Case 3= When r=2
a^3=64q^3+96q^2+48q+8
a^3=4(16q^3+19q^2+12q+2)a^3=4m where m=16q^3+19q^2+12q+2
Case4when r=3
a^3=64q^3+144q^2+108q+27
a^3=4(16q^3+36q^2+27q+6)+3
a^3=4m+3 where m= 16q^3+36q^2+27q+3
it will surely help u
Let us take any two positive integer (say 'a' and 'b') where b = 4 and q is any natural number.
According to Euclid's Division Lemma
a = bq + r
Here, b = 4
So, a = 4q + r
0 ≤ r < b
0 ≤ r < 4
So, r = 0,1,2,3
Case (1):
When r = 0
a = 4q
Cubing both Sides,
Case (2):
When r = 1
a = 4q + 1
Cubing both Sides,
Case (3):
When r = 2
a = 4q + 2
Cubing both Sides,
Case 4:
When r = 3
a = 4q + 3
Cubing both Sides,
Hence, the cube of any positive integer is in the form 4m, 4m+1 and 4m+ 3