Math, asked by sonam2138, 10 months ago

show that the cube of any positive integer is of the form 4m, 4m+1, or 4m+3 for some integer m.​


sonam2138: answer this question
sonam2138: no body will able to answer this question

Answers

Answered by sahil575814
1

Answer:

Let a be any +ve integer

a=bq+

b=4

0   \leqslant r < 4

Step-by-step explanation:

Solution : put r=0,1,2,3

Case 1 : put r=0

a=4q+o.

a=4q

Cubing both side

a3=(4q) 3

a3=64q3

a3=4(16q3)

Put 16q3=m

a3=4m

Case 2 : put r=1

a=4q+r

a=4q+1

Cubing both side

a3=(4q+1)3

a3=64q3+1+8q

a3=(64q3+8q)+1

a3=4(16q3+2q)+1

Put 16q3+2q=m

a3=4m+1

Case 3 :

Put r=2

a=4q+2

Cubing both side

a3=(4q+2)3

a3=64q3+8+16q

a3=64q3+16q+8

a3=4(16q3+4q+2)+2

Put 16q3+4q+2=m

a3=4m+2

Case 4 :

Put r=3

a=4q+3

Cubing both side

a3=(4q+3)3

a3=64q3+27+24q

a3=64q3+24q+27

a3= 4(16q3+6q+3)+3

Put 16q3+6q+3)+3=m

a3=4m+3

Answered by Anonymous
3

Step-by-step explanation:

Step-by-step explanation:

Let 'a' be any positive integer and b = 4.

Using Euclid Division Lemma,

a = bq + r [ 0 ≤ r < b ]

⇒ a = 3q + r [ 0 ≤ r < 4 ]

Now, possible value of r :

r = 0, r = 1, r = 2, r = 3

CASE 1:

If we take, r = 0

⇒ a = 4q + 0

⇒ a = 4q

On cubing both sides,

⇒ a³ = (4q)³

⇒ a³ = 4 (16q³)

⇒ a³ = 9m [16q³ = m as integer]

CASE 2:

If we take, r = 1

⇒ a = 4q + 1

On cubing both sides ;

⇒ a³ = (4q + 1)³

⇒ a³ = 64q³ + 1³ + 3 * 4q * 1 ( 4q + 1 )

⇒ a³ = 64q³ + 1 + 48q² + 12q

⇒ a³ = 4 ( 16q³ + 12q² + 3q ) + 1

⇒ a³ = 4m + 1 [ Take m as some integer ]

CASE 3:

If we take r = 2,

⇒ a = 4q + 2

On cubing both sides ;

⇒ a³ = (4q + 2)³

⇒ a³ = 64q³ + 2³ + 3 * 4q * 2 ( 4q + 2 )

⇒ a³ = 64q³ + 8 + 96q² + 48q

⇒ a³ = 4 ( 16q³ + 2 + 24q² + 12q )

⇒ a³ = 4m [Take m as some integer]

CASE 4 :

If we take, r = 3

⇒ a = 4q + 3

On cubing both the sides;

⇒ a³ = (4q + 3)³

⇒ a³ = 64q³ + 27 + 3 * 4q * 3 (4q + 3)

⇒ a³ = 64q³ + 24 + 3 + 144q² + 108q

⇒ a³ = 4 (16q³ + 36q² + 27q + 6) + 3

⇒ a³ = 4m + 3 [Take m as some integer]

Hence, the cube of any positive integer is in the form of 4m, 4m+1 or 4m+3.

__________________

Identity used ;

∵ ( a + b )³ = a³ + b³ + 3ab ( a + b ) .

Hence, it is solved.

Similar questions