Math, asked by hriship12, 1 year ago

show that the cube of any positive integer is of the form 4m, 4m+1, 4m+3 for some integer m​

Answers

Answered by shriyanshvarshney
2

Answer:

Step-by-step explanation:

Let a,b be positive integers and b=4

then using euclid lemma

a=b*q+r,where q and r are any positive integers and 0<=r<b

∴r=0,1,3,2

so a=4q;a=4q+1;a=4q+2;a=4q+3

cubing

a^3=64q^3;

a^3=64q^3+1+12q(4q+1);

a^3=64q^3+8+24q(4q+2);

a^3=64q^3+27+36(4q+3)

a^3=4(16q^3);

a^3=4(16q^3+3q(4q+1))+1;

a^3=4(16q^3+2+6(4q+2));

a^3=4(16q^3+6+9(4q+3))+3;

Let 16q^3,16q^3+3q(4q+1),16q^3+2+6(4q+2),16q^3+6+9(4q+3) be m

∴a^3=4m;4m+1;4m;4m+3

=4m;4m+1;4m+3


shriyanshvarshney: mark as brainliest
Answered by Anonymous
6

Step-by-step explanation:

Let 'a' be any positive integer and b = 4.

Using Euclid Division Lemma,

a = bq + r [ 0 ≤ r < b ]

⇒ a = 3q + r [ 0 ≤ r < 4 ]

Now, possible value of r :

r = 0, r = 1, r = 2, r = 3

CASE 1:

If we take, r = 0

⇒ a = 4q + 0

⇒ a = 4q

On cubing both sides,

⇒ a³ = (4q)³

⇒ a³ = 4 (16q³)

⇒ a³ = 9m [16q³ = m as integer]

CASE 2:

If we take, r = 1

⇒ a = 4q + 1

On cubing both sides ;

⇒ a³ = (4q + 1)³

⇒ a³ = 64q³ + 1³ + 3 * 4q * 1 ( 4q + 1 )

⇒ a³ = 64q³ + 1 + 48q² + 12q

⇒ a³ = 4 ( 16q³ + 12q² + 3q ) + 1

⇒ a³ = 4m + 1 [ Take m as some integer ]

CASE 3:

If we take r = 2,

⇒ a = 4q + 2

On cubing both sides ;

⇒ a³ = (4q + 2)³

⇒ a³ = 64q³ + 2³ + 3 * 4q * 2 ( 4q + 2 )

⇒ a³ = 64q³ + 8 + 96q² + 48q

⇒ a³ = 4 ( 16q³ + 2 + 24q² + 12q )

⇒ a³ = 4m [Take m as some integer]

CASE 4 :

If we take, r = 3

⇒ a = 4q + 3

On cubing both the sides;

⇒ a³ = (4q + 3)³

⇒ a³ = 64q³ + 27 + 3 * 4q * 3 (4q + 3)

⇒ a³ = 64q³ + 24 + 3 + 144q² + 108q

⇒ a³ = 4 (16q³ + 36q² + 27q + 6) + 3

⇒ a³ = 4m + 3 [Take m as some integer]

Hence, the cube of any positive integer is in the form of 4m, 4m+1 or 4m+3.

__________________

Identity used ;

∵ ( a + b )³ = a³ + b³ + 3ab ( a + b ) .

Hence, it is solved.

Similar questions