Show that the cube of any positive integer is of the form 4p or 4p+1 or 4p+3 for some integer p
Answers
Answered by
0
Answer:
the poosible remainders are 0;1;2
apply them in eqation 4p+r
r=0;;1;2
Answered by
0
Let a be any positive integer and b=2
Applying Euclid's division lemma a= 2q+r 0≤ r < 2
possible values of r are 0,1,
when r = 0 a= 2q
when r = 1 a= 2q+1
1) a=2q
- (2q)^3 = 8q^3
- 2*2*2q
- 4(2q)
- 4p where p = 2q
2) a=2q+1
- (2q+1)^3
- 8q^3 +3*4q^2*1 + 3*2q*1+1
- 8q^3+ 24q + 6q +1
- 4(2q^3+ 3q +6q) +1
- 4p+1 where p= 2q^3 +3q +6q
Similar questions