Math, asked by arunpatil2, 1 year ago

show that the cube of any positive integers of is of the form for M, 4 m + 1 or 4 m + 3 for some integer m​

Answers

Answered by muskanc918
37

\huge{\rm{\underline{\underline{Question:-}}}}

Show that the cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3 for some integer m.

\huge{\rm{\underline{\underline{Solution:-}}}}

Let 'n' be any positive integer.

Applying Euclid's division lemma with divisor 4, we get -

n = 4q , 4q+1 , 4q+2 or 4q+3 , where q is some whole number.

Four cases arise:-

Case l - If n = 4q , then-

\large{\rm{ {n}^{3}  =  {(4q)}^{3}  = 64 {q}^{3 } = 4m  ,}} where \large{\rm{{16q}^{3}  }} is an integer.

Case II - If n = 4q + 1, then-

\large{\rm{  {n}^{3}  =  {(4q + 1)}^{3}  }}

\large{\rm{ \:  \:  \:  \:  \:  \:=  {64q}^{3}  + 3. {(4q)}^{2} .1 + 3.4q. {(1)}^{2}  +  {(1)}^{3}}}

\large{\rm{ \:  \:  \:  \:  \:  \: = 64 {q}^{3}  + 48 {q}^{2}   + 12q + 1 }}

\large{\rm{ \:  \:  \:  \:  \:  \: = 4(16 {q}^{3}  + 12 {q}^{2}  + 3q) + 1}}

\large{\rm{ \:  \:  \:  \:  \:  \:  = 4m + 1}} ,

where \large{\rm{ m = 16 {q}^{3}  + 12 {q}^{2}  + 3q  }} is an integer.

Case III - If n = 4q + 2 , then-

\large{\rm{  {n}^{3}  =  {(4q + 2)}^{3}    }}

\large{\rm{\:  \:  \:  \:  \:  \: =  {64q}^{3}  + 3. {(4q)}^{2} .2 + 3.4q. {(2)}^{2}  +  {(2)}^{3}}}

\large{\rm{ \:  \:  \:  \:  \:  \: = 64 {q}^{3}  + 96 {q}^{2}   + 48q + 8  }}

\large{\rm{ \:  \:  \:  \:  \:  \: = 4(16 {q}^{3}  + 24 {q}^{2}  + 12q + 2)   }}

\large{\rm{ \:  \:  \:  \:  \:  \:  = 4m }} ,

where \large{\rm{ m = 16 {q}^{3}  + 24 {q}^{2}  + 12q + 2}} is an integer.

Case IV - If n = 4q + 3 , then-

\large{\rm{    {n}^{3}  =  {(4q + 3)}^{3}   }}

\large{\rm{\:  \:  \:  \:  \:  \: =  {64q}^{3}  + 3. {(4q)}^{3} .2 + 3.4q. {(3)}^{2}  +  {(3)}^{3}}}

\large{\rm{  \:  \:  \:  \:  \:  \: = 64 {q}^{3}  + 144 {q}^{2}   + 108q + 27  }}

\large{\rm{ \:  \:  \:  \:  \:  \:  = 4(16 {q}^{3}  + 36 {q}^{2}  + 27q + 6) + 3}}

\large{\rm{  \:  \:  \:  \:  \:  \:  = 4m + 3}} ,

where \large{\rm{ m = 16 {q}^{3}  + 36 {q}^{2}  + 27q + 6}} is an integer.

Hence , the cube of any positive integer is of the form 4m , 4m + 1 or 4m + 3 for some integer m.

Answered by BrainlyPie
18

\huge\mathfrak{\underline{\underline{Solution:-}}}

Let the given positive integer be a which when divided by 4 gives q as the quotient and r as the remainder.

•°• by Euclid's Division Lemma, we have

a = 4q + r, where r is greater than or equal to 0 and less than 4.

Thus, the possible reminders are 0, 1, 2, and 3.

Hence, a could be

=> a = 4q

=> a = 4q + 1

=> a = 4q + 2

=> a = 4q + 3

Case 1 : When a = 4q

a³ = (4q³)

a³ = 64q³

a³ = 4(16q³)

a³ = 4m (where m = 16q³)

Case 2 : When a = 4q + 1

a³ = (4q + 1

a³ = 64q³ + 48q² + 12q + 1

a³ = 4(16q³ + 12q² + 3q) + 1

a³ = 4m + 1 (where m = 16q³ + 12q² + 3q)

Case 3 : When a = 4q + 2

a³ = (4q + 2)³

a³ = 64q³ + 96q² + 48q + 8

a³ = 4(16q³ + 24q² + 12q + 2)

a³ = 4m (where m = 16q³ + 24q² + 12q + 2)

Case 4 : When a = 4q + 3

a³ = (4q + 3)³

a³ = 64q³ + 144q² + 108q + 27

a³ = 4(16q³ + 36q² + 27q + 6) + 3

a³ = 4m + 3 (where m = 16q³ + 36q² + 27q + 6)

Thus, the cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3 for some integer m.

Similar questions