Show that the cubeof any postive integer is of the form. (4m)or 4m+1 or 4m+3 some integer m
Hint n 4q,4q+1,4q+2,4q+3
Answers
Let 'a' be any positive integer and b = 4.
Using Euclid Division Lemma,
a = bq + r [ 0 ≤ r < b ]
⇒ a = 4q + r [ 0 ≤ r < 4 ]
Now, possible value of r :
r = 0, r = 1, r = 2, r = 3
If we take, r = 0
⇒ a = 4q + 0
⇒ a = 4q
On cubing both sides,
⇒ a³ = (4q)³
⇒ a³ = 4 (16q³)
⇒ a³ = 4m [16q³ = m as integer]
If we take, r = 1
⇒ a = 4q + 1
On cubing both sides ;
⇒ a³ = (4q + 1)³
⇒ a³ = 64q³ + 1³ + 3 * 4q * 1 ( 4q + 1 )
⇒ a³ = 64q³ + 1 + 48q² + 12q
⇒ a³ = 4 ( 16q³ + 12q² + 3q ) + 1
⇒ a³ = 4m + 1 [ Take m as some integer ]
If we take r = 2,
⇒ a = 4q + 2
On cubing both sides ;
⇒ a³ = (4q + 2)³
⇒ a³ = 64q³ + 2³ + 3 * 4q * 2 ( 4q + 2 )
⇒ a³ = 64q³ + 8 + 96q² + 48q
⇒ a³ = 4 ( 16q³ + 2 + 24q² + 12q )
⇒ a³ = 4m [Take m as some integer]
If we take, r = 3
⇒ a = 4q + 3
On cubing both the sides;
⇒ a³ = (4q + 3)³
⇒ a³ = 64q³ + 27 + 3 * 4q * 3 (4q + 3)
⇒ a³ = 64q³ + 24 + 3 + 144q² + 108q
⇒ a³ = 4 (16q³ + 36q² + 27q + 6) + 3
⇒ a³ = 4m + 3 [Take m as some integer]
Hence, the cube of any positive integer is in the form of 4m, 4m+1 or 4m+3.
__________________
Identity used ;
( a + b )³ = a³ + b³ + 3ab ( a + b )
Answer:
Step-by-step explanation:
Let "a" be any positive integer and b = 4.
By Euclid Division Lemma, the positive value of r = 0, 1, 2, 3 & 4.
Now, The Positive value of "a" be 4m+0, 4m+1, 4m+2, 4m+3.
Case |,
a = 4m+0
Cubing on both the sides,
a³ = ( 4m +0)³
=> a³ = 64m³
=> a³ = 4(16m³)
Let a³ = x & (16m³) =m. (Where m is any positive integer).
=> X = 4m.
Case ||,
a = 4m+1
a³ = (4m+1)³
=> a³ = 64m³ + 1 + 3*4m*1 ( 4m+1)
=> a³ = 64m³ + 1 + 12m*4m + 12m*1
=> a³ = 64m³ + 48m² + 12m +1
=> a³ = 4 ( 16m³ + 12m² + 3m ) +1
Let's a = X & (16m³ + 12m² + 3m) = m.
=> X = 4m +1.
Case |||,
a³ = ( 4m +2)³
=> a³ = 64m³ + 8 + 3*4m*2 ( 4m +2)
=> a³ = 64m³ + 8 + 24m*4m + 24m*2
=> a³ = 64m³ + 96m² + 48m + 8
=> a³ = 4 ( 16m³ + 24m² + 12m +2 )
Let's a³ = X & ( 16m³ + 24m² + 12m +2 )= m.
=> X = 4m.
Case |V,
a³ = (4m+3)³
=> a³ = 64m³ + 27 + 36m ( 4m +3)
=> a³ = 64m³ + 27 + 144m² + 108m
=> a³ = 4 ( 16m³ + 36m² + 27m + 6) +3
Let's a³ = X & ( 16m³ + 36m² + 27m + 6) = m.
=> X = 4m +3.
Hence,
The cube of any positive integer is of the form 4m , 4m+1 and 4m+3.
Formula Used :-
(a+b)³ = a³ + b³ + 3ab(a+b).
#