Math, asked by GindRajj, 1 year ago

Show that the cubeof any postive integer is of the form. (4m)or 4m+1 or 4m+3 some integer m


Answers

Answered by Anonymous
5

\huge\bf\pink{\mid{\overline{\underline{Your\: Answer}}}\mid}

step-by-step explanation:

Let 'a' be any positive integer and b = 4.

Using Euclid Division Lemma,

a = bq + r [ 0 ≤ r < b ]

⇒ a = 3q + r [ 0 ≤ r < 4 ]

Now, possible value of r :

r = 0, r = 1, r = 2, r = 3

__________________

________

CASEI:

If we take, r = 0

⇒ a = 4q + 0

⇒ a = 4q

On cubing both sides,

⇒ a³ = (4q)³

⇒ a³ = 4 (16q³)

⇒ a³ = 9m [16q³ = m as integer]

___________________

___________

CASEII:

If we take, r = 1

⇒ a = 4q + 1

On cubing both sides ;

⇒ a³ = (4q + 1)³

⇒ a³ = 64q³ + 1³ + 3 * 4q * 1 ( 4q + 1 )

⇒ a³ = 64q³ + 1 + 48q² + 12q

⇒ a³ = 4 ( 16q³ + 12q² + 3q ) + 1

⇒ a³ = 4m + 1

___________________

__________

CASEIII:

If we take r = 2,

⇒ a = 4q + 2

On cubing both sides ;

⇒ a³ = (4q + 2)³

⇒ a³ = 64q³ + 2³ + 3 * 4q * 2 ( 4q + 2 )

⇒ a³ = 64q³ + 8 + 96q² + 48q

⇒ a³ = 4 ( 16q³ + 2 + 24q² + 12q )

⇒ a³ = 4m

___________________

__________

CASEIV:

If we take, r = 3

⇒ a = 4q + 3

On cubing both the sides;

⇒ a³ = (4q + 3)³

⇒ a³ = 64q³ + 27 + 3 * 4q * 3 (4q + 3)

⇒ a³ = 64q³ + 24 + 3 + 144q² + 108q

⇒ a³ = 4 (16q³ + 36q² + 27q + 6) + 3

⇒ a³ = 4m + 3 [Take m as some integer]

Hence, the cube of any positive integer is in the form of 4m, 4m+1 or 4m+3.

__________________

Identity used ;

( a + b )³ = a³ + b³ + 3ab ( a + b )


meharsingh61: App se
meharsingh61: Virus
meharsingh61: Kya
meharsingh61: Accha. YEh photo jo lagae hai yeh app ki hai
meharsingh61: I am just joking
meharsingh61: Ok
Answered by Anonymous
5
Let a be the +ve integer and b = 4.

\text{\underline{Then,}}

\text{\underline{By\:Euclid's\:algorithm,}}

{a = 4q + r} for some integer q ≥ 0 and r = 0, 1, 2, 3

\text{\underline{Because,}} 0 ≤ r < 4.


____________________


\text{\underline{So,}}

\sf{a = 4q\:or\:(4q + 1)} or \sf{(4q + 2)\:or\:(4q + 3)}

\sf{(4q)^{3}}

\sf{= 64 {q}^{3}}

\sf{= 4(16 {q}^{3} )}

\sf{= 4m,} \text{where\:m\:is\:some\:integer.}


____________________


\sf{(4q + 1) ^{3}}

\sf{= 64 {q}^{3} + 48 {q}^{2} + 12q + 1}

\sf{ = 4(16 {q}^{3} + 12 {q}^{2} + 3) + 1}

\sf{ = 4m + 1,} \text{where\:m\:is\:some\:integer.}


____________________


\sf{(4q + 2) ^{3}}

\sf{ = 64 {q}^{3} + 96q ^{2} + 48q + 8}

\sf{ = 4(16 {q}^{3} + 24q ^{2} + 12q + 2)}

\sf{ = 4m,} \text{where\:m\:is\:some\:integer.}


____________________


\sf{(4q + 3) ^{3}}

\sf{ = 64q^{3} + 144 {q}^{2} + 108q + 27}

\sf{= 4(16q ^{3} + 36q ^{2} + 27q + 6) + 3}

\sf{ = 4m + 3,} \text{where\:m\:is\:some\:integer.}


____________________


\text{\underline{Hence,}}

The cube of any +ve integer is of the form, \sf{4m,} \sf{4m + 1}or \sf{4m + 3} for some integer m.

BrainlyHeart751: Awesome answer
BrainlyHeart751: Tujhe to maths nhi aati thi ye question kese solve Kia ?
Anonymous: Haha xD
Anonymous: Aarey aati hai yrr xD
BrainlyHeart751: hehe XD XD XD XD ❤❤❤^_^^_^;-);-)
Similar questions