Show that the curves 4x = y2 and 4xy=k cut at right angles, if k2 =512.
Answers
Answer:
ANSWER
The given curves are,
⇒ 4x=y
2
----- ( 1 )
⇒ 4xy=k ----- ( 2 )
We have to prove that two curves cut at right angles if k
2
=512
Now,
4x=y
2
Differentiating both sides w.r.t.x, we get
⇒ 4=2y.
dx
dy
⇒
dx
dy
=
y
2
⇒ m
1
=
y
2
----- ( 3 )
4xy=k
Differentiating both sides w.r.t.x, we get
⇒ 4(1×y+x
dx
dy
)=0
⇒ y+x
dx
dy
=0
⇒
dx
dy
=
x
−y
⇒ m
2
=
x
−y
----- ( 4 )
It is given that two curves intersect orthogonally.
∴ m
1
.m
2
=−1
⇒
y
2
×
x
−y
=−1 [ From ( 3 ) and ( 4 ) ]
⇒
x
−2
=−1
⇒ x=2
Now,
4xy=k
⇒ (y
2
)y=k [ Since, 4x=y ]
⇒ y
3
=k
⇒ y=k
3
1
Substituting y=k
3
1
in equation ( 1 ) we get,
⇒ 4x=(k
3
1
)
2
⇒ 4×2=k
3
2
⇒ 8=k
3
2
⇒ k
2
=(8)
3
[ Taking cube on both sides ]
⇒ k
2
=512