Math, asked by Nazlaarsh, 11 months ago

show that the diagonals of a square are equal and bisect each other at right angles​

Answers

Answered by rudhra73
2

Answer:

HEY MATE HERE IS YOUR ANSWER

Step-by-step explanation:

GIVEN:

ABCD be a square. Let the diagonals AC and BD intersect each other at a point O.

RTP:

the diagonals of a square are equal and bisect each other at right angles,

AC = BD, OA = OC, OB = OD, and ∠AOB = 90º.

PROOF:

  • In ΔABC and ΔDCB,

AB = DC (Sides of a square are equal to each other)

∠ABC = ∠DCB (All interior angles are of 90)

BC = CB           (Common side)

So, ΔABC ≅ ΔDCB      (By SAS congruency)

Hence, AC = DB          (By CPCT)

Hence, the diagonals of a square are equal in length.

  • In ΔAOB and ΔCOD,

∠AOB = ∠COD    (Vertically opposite angles)

∠ABO = ∠CDO   (Alternate interior angles)

AB = CD   (Sides of a square are always equal)

So, ΔAOB ≅ ΔCOD  (By AAS congruence rule)

Hence, AO = CO and OB = OD     (By CPCT)

Hence, the diagonals of a square bisect each other.

  • In ΔAOB and ΔCOB,

As we had proved that diagonals bisect each other, therefore,

AO = CO

AB = CB   (Sides of a square are equal)

BO = BO    (Common)

So, ΔAOB ≅ ΔCOB       (By SSS congruency)

Hence, ∠AOB = ∠COB      (By CPCT)

However,

∠AOB + ∠COB =180°{Linear Pair}

AOB+AOB=180°

*2<AOB=180°

<AOB=180°/2

<AOB=90°

Hence PROVED....

{/* ANGLE /}

Attachments:
Answered by CandyCakes
0

Step-by-step explanation:

Given that ABCD is a square.

To prove : AC=BD and AC and BD bisect each other at right angles.

Proof:

(i) In a ΔABC and ΔBAD,

AB=AB ( common line)

BC=AD ( opppsite sides of a square)

∠ABC=∠BAD ( = 90° )

ΔABC≅ΔBAD( By SAS property)

AC=BD ( by CPCT).

(ii) In a ΔOAD and ΔOCB,

AD=CB ( opposite sides of a square)

∠OAD=∠OCB ( transversal AC )

∠ODA=∠OBC ( transversal BD )

ΔOAD≅ΔOCB (ASA property)

OA=OC ---------(i)

Similarly OB=OD ----------(ii)

From (i) and (ii) AC and BD bisect each other.

Now in a ΔOBA and ΔODA,

OB=OD ( from (ii) )

BA=DA

OA=OA ( common line )

ΔAOB=ΔAOD----(iii) ( by CPCT

∠AOB+∠AOD=180° (linear pair)

2∠AOB=180°

∠AOB=∠AOD=90°

∴AC and BD bisect each other at right angles.

Attachments:
Similar questions