Show that the diagonals of a square are equal and bisect each other at right angles.
Answers
Answered by
10
Hey there your answer
Attachments:
Answered by
0
Step-by-step explanation:
Given that ABCD is a square.
To prove : AC=BD and AC and BD bisect each other at right angles.
Proof:
(i) In a ΔABC and ΔBAD,
AB=AB ( common line)
BC=AD ( opppsite sides of a square)
∠ABC=∠BAD ( = 90° )
ΔABC≅ΔBAD( By SAS property)
AC=BD ( by CPCT).
(ii) In a ΔOAD and ΔOCB,
AD=CB ( opposite sides of a square)
∠OAD=∠OCB ( transversal AC )
∠ODA=∠OBC ( transversal BD )
ΔOAD≅ΔOCB (ASA property)
OA=OC ---------(i)
Similarly OB=OD ----------(ii)
From (i) and (ii) AC and BD bisect each other.
Now in a ΔOBA and ΔODA,
OB=OD ( from (ii) )
BA=DA
OA=OA ( common line )
ΔAOB=ΔAOD----(iii) ( by CPCT
∠AOB+∠AOD=180° (linear pair)
2∠AOB=180°
∠AOB=∠AOD=90°
∴AC and BD bisect each other at right angles.
Attachments:
Similar questions