Show that the equation e^sin x-e^-sin x-4=0 has no real root
Anonymous:
hii
Answers
Answered by
0
esinx – e-sinx – 4 = 0
t = esinx
t – 1/t = 4
t2 – 4t – 1 = 0
t = 4 ± √16 + 4 / (2)
t = 4 ± 2√5 / (2)
t = 2 ± √5
esinx = 2 ± √5
-1 ≤ sinx ≤ 1
1/e ≤ esinx ≤ e
Similar questions