Math, asked by 8008333541k, 6 months ago

show that the equation of the pair of straight lines passing through the origin and making an angle 30 with the line 3x-y-1=0 is 13x^-12xy-3y^​

Answers

Answered by amitnrw
1

Given :  equation of the pair of straight lines passing through origin and making an angle of 30° with the line 3x-y-1=0 is 13 x² - 12xy -3y²=0

To Find :  Show that

Solution:

Let say slope of line making an angle of 30° with the line 3x-y-1=0 is  m

slope of line 3x-y-1=0   is  3   as ( y = 3x - 1)

slope m  &  3

tan 30° = |  (m - 3) /( 1 + 3m)|

±1/√3  =   (m - 3) /( 1 + 3m)

=> 1 + 3m  = m√3  - 3√3    or 1 + 3m  =  -  m√3 + 3√3

1 + 3m  = m√3  - 3√3

=> m(3 - √3) = - (3√3 + 1)

=> m =  - (3√3 + 1) /((3 - √3)

=> m =   - (3√3 + 1)(3 + √3)/6

=> m =   - (12 + 10√3 )/6

=> m = - (6  + 5√3)/3

y =   - (6  + 5√3)x/3    as passes though origin

=> 3y  + (6  + 5√3)x = 0

1 + 3m  =  -  m√3 + 3√3

=> m(3 + √3)  =  3√3 - 1

=> m = (3√3 - 1)(3 - √3) / 6

=> m = (-12  + 10√3)/6

=> m = -( 6  - 5√3)/3

=>  =3y +  ( 6  - 5√3)x 0

3y  + (6  + 5√3)x = 0

3y +  ( 6  - 5√3)x 0

Multiplying both  

9y²  + 3y(12)x  - 39x² = 0

=> 3y²  + 12xy  - 13x² = 0

=> 13x² - 12xy + 3y² = 0

QED

Learn More:

Derive an expression for acute angle between two lines slopes m1 ...

brainly.in/question/12863695

​  Using your protractor, draw an angle of measure 108°. With this ...

brainly.in/question/15910817

find the equation of the bisector of the obtuse angle between the ...

brainly.in/question/11991231

Attachments:
Similar questions