Math, asked by mojhaa0, 1 month ago

Show that the equation px² + qx + r = 0 and qx² + rx + p = 0 will have a common root if p+q+r=0 or p=q=r.​

Answers

Answered by mathdude500
45

\large\underline{\sf{Solution-}}

Given pair of quadratic equations are

\rm :\longmapsto\:p {x}^{2} +  qx + r = 0 -  -  - (1)

and

\rm :\longmapsto\:q{x}^{2} +  rx + p= 0 -  -  - (2)

Let assume that the common root be 'y'.

So, above equations can be rewritten as

\rm :\longmapsto\:p {y}^{2} +  qy + r = 0 -  -  - (3)

and

\rm :\longmapsto\:q{y}^{2} +  ry + p= 0 -  -  - (4)

So, Using Cross Multiplication method we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  q & \sf  r & \sf p & \sf  q\\ \\ \sf r & \sf p & \sf q & \sf r\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{ {y}^{2} }{pq -  {r}^{2} }  = \dfrac{y}{ {p}^{2}  - rq}  = \dfrac{1}{pr -  {q}^{2} }

\rm :\implies\:y = \dfrac{ {p}^{2} - rq }{pr -  {q}^{2} }

and

\rm :\implies\: {y}^{2}  = \dfrac{pq -  {r}^{2} }{pr -  {q}^{2} }

On Substituting the value of y, we get

\rm :\implies\: \dfrac{ {( {p}^{2} - rq) }^{2} }{ {(pr -  {q}^{2} )}^{2} }  = \dfrac{pq -  {r}^{2} }{pr -  {q}^{2} }

\rm :\implies\: \dfrac{ {( {p}^{2} - rq) }^{2} }{ {(pr -  {q}^{2} )}}  = pq -  {r}^{2}

\rm :\implies\: {( {p}^{2} - rq) }^{2} = (pq -  {r}^{2}) (pr -  {q}^{2} )

\rm :\longmapsto\: {p}^{4} +  {r}^{2} {q}^{2} - 2 {p}^{2}qr =  {p}^{2}qr -  {pr}^{3} -  {pq}^{3} +  {q}^{2} {r}^{2}

\rm :\longmapsto\: {p}^{4}  - 3{p}^{2}qr +  {pr}^{3} + {pq}^{3}  = 0

\rm :\longmapsto\: p({p}^{3}+{r}^{3} + {q}^{3} - 3pqr)  = 0

\rm :\longmapsto\: {p}^{3}+{r}^{3} + {q}^{3} - 3pqr = 0

\rm :\longmapsto\:(p + q + r)( {p}^{2} +  {q}^{2} +  {r}^{2} - pq - qr - rp) = 0

\bf\implies \:p + q + r = 0

or

\bf\implies \:{p}^{2} +  {q}^{2} +  {r}^{2} - pq - qr - rp = 0

\rm :\longmapsto\: \:2{p}^{2} +  2{q}^{2} +  2{r}^{2} -2 pq -2 qr - 2rp= 0

\rm :\longmapsto\:{p}^{2} +  {p}^{2}+{q}^{2}+{q}^{2}+{r}^{2} + {r}^{2}  -2 pq -2 qr - 2rp= 0

\rm :\longmapsto\:( {p}^{2} +  {q}^{2} - 2pq) + ( {q}^{2} +  {r}^{2} - 2qr) + ( {r}^{2}    +  {p}^{2} - 2pr) = 0

\rm :\longmapsto\: {(p - q)}^{2} +  {(q - r)}^{2} +  {(r - p)}^{2} = 0

We know, Sum of squares is 0 only, when

\rm :\longmapsto\: {(p - q)} = 0 \: and \: {(q - r)} = 0 \: and \:{(r - p)} = 0

\rm :\longmapsto\:p = q \: and \: q = r \: and \: r = p

\bf\implies \:p = q = r

Hence, Proved

Similar questions