Math, asked by Mauryasachin7255, 1 year ago

show that the equations x+y+z=6, x+2y+3z=14, x+4y+7z=30 are consistent jntu 2002 solution

Answers

Answered by Anonymous
2
hope you will like it
Attachments:
Answered by FelisFelis
3

Answer:

Given equations are:

    x + y +z  = 6

x + 2y + 3z = 14

 x + 4y + 7z = 30

Consistence condition of linear equation is determinant of coefficients of equation is zero.

\det \begin{pmatrix}1&1&1\\ 1&2&3\\ 1&4&7\end{pmatrix}

\mathrm{Find\:the\:matrix\:determinant\:according\:to\:formula}:

\det \begin{pmatrix}a&b&c\\ d&e&f\\ g&h&i\end{pmatrix}=a\cdot \det \begin{pmatrix}e&f\\ h&i\end{pmatrix}-b\cdot \det \begin{pmatrix}d&f\\ g&i\end{pmatrix}+c\cdot \det \begin{pmatrix}d&e\\ g&h\end{pmatrix}

=1\cdot \det \begin{pmatrix}2&3\\ 4&7\end{pmatrix}-1\cdot \det \begin{pmatrix}1&3\\ 1&7\end{pmatrix}+1\cdot \det \begin{pmatrix}1&2\\ 1&4\end{pmatrix}

\det \begin{pmatrix}2&3\\ 4&7\end{pmatrix}=2

\det \begin{pmatrix}1&3\\ 1&7\end{pmatrix}=4

\det \begin{pmatrix}1&2\\ 1&4\end{pmatrix}=2

=1\cdot \:2-1\cdot \:4+1\cdot \:2

1\cdot \:2-1\cdot \:4+1\cdot \:2=0

=0

Hence, equations are: x + y +z  = 6 ,  x + 2y + 3z = 14 and  x + 4y + 7z = 30 are consistent

Similar questions