Math, asked by manbapariong, 10 months ago

show that the following point are collinear:(0,1),(1,2) and (-2,-1)​

Answers

Answered by Anonymous
9

 \huge\bf\underline \green{Solution:-}

If these three points are Collinear then the area of triangle formed by these three points is 0.

Area of triangle = \bf\pink{\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]}

Let the points be A (0,1) ,B(1,2) , C(-2-1)

  • x1 = 0 , x2 = 1 , x3 = -2
  • y1 = 1 , y2 = 2 , y3 = -1

: \implies   \rm\:  \small\frac{1}{2}[0(2 - ( - 1)) + 1( - 1 - 1)   - 2(1 - 2)]  \\  \\ : \implies   \rm\: \frac{1}{2}[0(3) + 1( - 2) - 2( - 1)] \\  \\: \implies   \rm\: \frac{1}{2}[0 - \cancel2 +  \cancel2]  \\  \\ : \implies   \rm\: \frac{1}{2}[0] \\  \\: \implies   \rm\: 0\\\\

Since,

Area becomes zeroes then,

(0,1),(1,2) and (-2,-1) are collinear points.

Other method :-

________________________

B⠀⠀⠀⠀⠀⠀A⠀⠀⠀⠀⠀⠀⠀C⠀⠀

A (0,1) ,B(1,2) , C(-2-1)

AB = √(1-0)²+(2-1)²

➝ AB = √1 +1

AB = √2 units

AC = √(-2-0)²+(-1-1)²

➝ AC = √4 +4

➝ AC = √8

AC = 2√2

BC = √(-2-1)²+(-1-2)²

➝ BC = √9+9

➝ BC = √18

BC = 3√2 units

for collinear points AB +AC = BC

➝ √2 + 2√2 = 3√2

3√2 = 3√2

Thus, AB + AC = BC.

Hence ,the given points are Collinear.

Answered by Anonymous
4

\red{\underline{\underline{Answer:}}}

\orange{Given:}

\sf{Co-ordinates \ of \ points \ are:-}

\sf{\implies{(01);}}

\sf{\implies{(1,2);}}

\sf{\implies{(-2-1)}}

\sf\pink{To \ prove:}

\sf{Points \ are \ collinear.}

\sf\green{Proof:}

\sf{Let \ given \ points \ be}

\sf{A(0,1); \ B(1,2) \ and \ C(-2,-1)}

\sf{Method \ (I)}

\sf{If \ points \ are \ collinear,}

\sf{Then \ slope \ of \ line \ formed \ by \ joining}

\sf{the \ line \ will \ be \ same.}

\sf\boxed{Slope \ of \ line(m)=\frac{y2-y1}{x2-x1}}

\sf{\therefore{Slope \ of \ AB=\frac{1-0}{2-1}}}

\sf{\therefore{Slope \ of \ AB=1...(1)}}

\sf{Slope \ of \ BC=\frac{-1-2}{-2-1}}

\sf{\therefore{Slope \ of \ BC=1...(2)}}

\sf{Slope \ of \ AC=\frac{-1-1}{-2-0}}

\sf{\therefore{Slope \ of \ AC=1...(3)}}

\sf{...from \ (1), \ (2) \ and \ (3)}

\sf{Slopes \ of \ AB, \ BC \ and \ AC}

\sf{are \ equal.}

\sf\purple{\tt{\therefore{Points \ (0,1); \ (1,2) \ and \ (-2,-1)}}}

\sf\purple{\tt{are \ collinear.}}

\sf{Method \ (II)}

\sf\boxed{Distance \ formula=\sqrt{(x1-x2)^{2}+(y1-y2)^{2}}}

\sf{\therefore{d(A,B)=\sqrt(1-0)^{2}+(2-1)^{2}}}}

\sf{\therefore{d(A,B=\sqrt2...(1)}}

\sf{d(B,C)=\sqrt{(-2-1)^{2}+(-1-2)^{2}}}

\sf{d(B,C)=\sqrt{9\times2}}

\sf{d(B,C)=3\sqrt2...(2)}

\sf{d(A,C)=\sqrt{(0-2)^{2}+(1+1)^{2}}}

\sf{d(A,C)=\sqrt{4\times2}}

\sf{d(A,C)=2\sqrt2...(3)}

\sf{If \ maximum \ distance=sum \ of other \ distances}

\sf{Then \ points \ are collinear}

\sf{3\sqrt2 \ is \ maximum \ distance.}

\sf{2\sqrt2+\sqrt2=3\sqrt2}

\sf{...from \ (1), \ (2) \ and \ (3)}

\sf{d(B,C)=d(A,B)+d(A,C)}

\sf\purple{\tt{\therefore{Points \ (0,1); \ (1,2) \ and \ (-2,-1)}}}

\sf\purple{\tt{are \ collinear.}}

Similar questions