Math, asked by PrashantRane, 3 months ago

show that the following point are the vertices of square (6,2) (2,1)(1,5)(5,6)​

Answers

Answered by BeautifulWitch
1

Answer:

The given points are A (6,2), B(2,1), C(1,5) and D(5,6)

{ \red{AB= \sqrt{ {(2-6)}^{2} + {(1-2)}^{2}  }}}{ \red{AB=  \sqrt{ { (- 4)}^{2}  + {( - 1)}^{2} }}}

{ \red{AB =  \sqrt{16 + 1}}}

{ \huge{ \boxed{ \red{AB =  \sqrt{17\: units} }}}}

{ \pink{BC =  \sqrt{ { (1 - 2)}^{2} +  {(5 - 1)}^{2}  } }}

{ \pink{BC =  \sqrt{  {( - 1)}^{2}  +  {( - 4)}^{2}  } }}

{ \pink{BC =  \sqrt{1+  16 } }}

{ \huge{  \boxed{ \pink{BC =  \sqrt{ 17\: units} }}}}

{ \purple{CD =  \sqrt{ {(5 - 1)}^{2} +  {(6 - 5)}^{2}  } }}

{ \purple{CD =  \sqrt{ {(4)}^{2} +  {(1)}^{2}  } }}

{ \purple{CD =  \sqrt{ 16 + 1  } }}

{ \huge{ \boxed{ \purple{CD =  \sqrt{ 17\: units } }}}}

{ \blue{ DA=  \sqrt{ {(5 - 6)}^{2} +  {(6 - 2)}^{2}  } }}

{ \blue{ DA=  \sqrt{ {(1)}^{2} +  {(4)}^{2}  } }}

{ \blue{ DA=  \sqrt{ 1 + 16 } }}

 { \huge{ \boxed{ \blue{ DA=  \sqrt{ 17 \: units } }}}}

Therefore, AB =BC =CD =DA = 17 units

Also,

{ \green{AC =  \sqrt{ {(1- 6)}^{2} +  {(5 - 2)}^{2}  } }}

{ \green{AC =  \sqrt{ {(- 5)}^{2} +  {(3)}^{2}  } }}

{ \green{AC =  \sqrt{ 25 + 9  } }}

 { \huge{ \boxed { \green{AC =  \sqrt{34\: units  } }}}}

{ \orange{ BD=  \sqrt{ {(5- 2)}^{2} +  {(6- 1)}^{2}  } }}

{ \orange{ BD=  \sqrt{ {(3)}^{2} +  {(5)}^{2}  } }}

{ \orange{ BD=  \sqrt{ 9 + 25 } }}

{ \huge{ \boxed { \orange{ BD=  \sqrt{34\: units  } }}}}

Thus, diagonal AC = diagonal BD

Therefore, the given points from a square.

Step-by-step explanation:

Hope this helps you ✌️

Similar questions