Math, asked by makhilesh290, 1 month ago

show that the following points are the vertices of right angle isosceles triangle is 1,2 .4,2,1,5​

Answers

Answered by varadad25
0

Answer:

The given points are vertices of isosceles right triangle.

Step-by-step-explanation:

Let the triangle be ABC.

  • A ( 1, 2 ) ≡ ( x₁, y₁ )
  • B ( 4, 2 ) ≡ ( x₂, y₂ )
  • C ( 1, 5 ) ≡ ( x₃, y₃ )

Now, by distance formula,

d ( A, B ) = √[ ( x₁ - x₂ )² + ( y₁ - y₂ )² ]

⇒ d ( A, B ) = √[ ( 1 - 4 )² + ( 2 - 2 )² ]

⇒ d ( A, B ) = √[ ( - 3 )² + 0² ]

⇒ d ( A, B ) = √( 9 + 0 )

⇒ d ( A, B ) = √( 9 )

⇒ d ( A, B ) = 3

Length of AB = 3 units - - - ( 1 )

Now,

d ( B, C ) = √[ ( x₂ - x₃ )² + ( y₂ - y₃ )² ]

⇒ d ( B, C ) = √[ ( 4 - 1 )² + ( 2 - 5 )² ]

⇒ d ( B, C ) = √[ ( 3 )² + ( - 3 )² ]

⇒ d ( B, C ) = √( 9 + 9 )

⇒ d ( B, C ) = √18

Length of BC = √18 units

∴ BC² = ( √18 )²

BC² = 18 units - - - ( 2 )

Now,

d ( A, C ) = √[ ( x₁ - x₃ )² + ( y₁ - y₃ )² ]

⇒ d ( A, C ) = √[ ( 1 - 1 )² + ( 2 - 5 )² ]

⇒ d ( A, C ) = √[ 0² + ( - 3 )² ]

⇒ d ( A, C ) = √( 0 + 9 )

⇒ d ( A, C ) = √( 9 )

⇒ d ( A, C ) = 3

Length of AC = 3 units - - - ( 3 )

From ( 1 ) & ( 3 )

Length of AB = Length of AC

△ABC is an isosceles triangle.

Now,

AB² + AC² = ( 3 )² + ( 3 )²

⇒ AB² + AC² = 9 + 9

AB² + AC² = 18 units - - - ( 4 )

From ( 2 ) & ( 4 ),

AB² + AC² = BC²

By converse of Pythagoras theorem,

m∠A = 90°

△ABC is an isosceles right triangle.

∴ The given points are vertices of isosceles right triangle.

Hence shown!

Similar questions