Math, asked by mohammadmoinpasha747, 7 months ago

show that the following sets of points are collinear and find the equation of the line L containing them are (1,3),(-2,-6),(2,6)​

Answers

Answered by MaheswariS
22

\underline{\textsf{Given:}}

\textsf{Points are (1,3), (-2,-6) and (2,6)}

\underline{\textsf{To find:}}

\textsf{The equation of  the line containing the given 3 points}

\underline{\textsf{Solution:}}

\underline{\mathsf{Formula\;used:}}

\mathsf{The\;equation\;of\;the\;line\;joining\;(x_1,y_1)\;and\;(x_2,y_2)\;is}

\boxed{\mathsf{\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}}}

\textsf{First we find out the equation of the line joining (1,3) and (-2,-6)}

\mathsf{\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}}

\mathsf{\dfrac{y-3}{-6-3}=\dfrac{x-1}{-2-1}}

\mathsf{\dfrac{y-3}{-9}=\dfrac{x-1}{-3}}

\mathsf{\dfrac{y-3}{3}=\dfrac{x-1}{1}}

\mathsf{y-3=3(x-1)}

\mathsf{y-3=3x-3}

\implies\mathsf{3x-y=0}

\mathsf{put\;x=2\;and\;y=6}

\mathsf{3(2)-6=0}

\mathsf{0=0}

\implies\textsf{(2,6)\;satsifies\;the\;equation\;3x-y=0}

\implies\textsf{(2,6) lies on the line 3x-y=0}

\therefore\textsf{The given 3 points are collinear}

\underline{\textsf{Answer:}}

\textsf{The equation of the line containing the given 3 points is 3x-y=0}

\underrline{\textsf{Find more:}}

Determine whether the points (-4,3) are (0, 3) and (2.3) collinear

https://brainly.in/question/21985656

If the point( x, y,), ( 2, 3) and (- 3, 4) are collinear then

https://brainly.in/question/7851580

Similar questions