Show that the four points A (5,-1,1), B (7,-4,7), C (1, -6, 10) and D (-1, -3, 4) are the vertices of a parallelogram.
Answers
Answered by
5
use the distance formula for the given vertices
Answered by
8
Answer:
AB ║ CD & AB = CD & BC ║ DA & BC = DA
=> ABCD is an parallelogram
Step-by-step explanation:
Show that the four points A (5,-1,1), B (7,-4,7), C (1, -6, 10) and D (-1, -3, 4) are the vertices of a parallelogram.
Correction -6.10 is actually -7
AB = √(7-5)² + (-4.7 -(-1.1))² = √ 4 + 12.96 = √16.96
m = (-4.7 - (-1.1)/(7-5) = -3.6/2 = -1.8
CD = √2² + 3.6² = √16.96
m = (-3.4 - (-7) )/(-1 -1) = 3.6/-2 = -1.8
Hence AB ║ CD & AB = CD
BC = √6² + 2.3² = √41.29
m = (-7 - (-4.7) )/(1 - 7) = -2.3 /-6 = 2.3/6
DA = √6² + 2.3² = √41.29
m = (-3.4 -(-1.1))/(-1 - 5) = -2.3/-6 = 2.3/6
Hence BC ║ DA & BC = DA
AB ║ CD & AB = CD & BC ║ DA & BC = DA
=> ABCD is an parallelogram
so ABCD are vertices of an parallelogram
Similar questions