Math, asked by piyushssngh, 1 year ago

Show that the function f : N ---> N defined by
f(x) = { x + 1 if x is odd
{ x - 1 if x is even

is one - one and onto

CBSE
CLASS 12TH mathematics

Need step by step explanation

Answers

Answered by nalinsingh
18

Answer:

Step-by-step explanation:

Attachments:

BrainlyConqueror0901: Nice explained : )
Answered by Anonymous
40

solution:

one-one:

Here we discuss the following possible case:

(1).when \:  x_{1} \: is \: odd \: and  \: x_{2}  \: is \: even. \\  \\ here \: f(x_{1}) = f(x_{2}) =  &gt; x_{1} + 1 = x_{2} - 1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  &gt; x_{2} - x_{1} = 2 </p><p>

which is impossible.

(2).when \:  x_{1} \: is \: even \: and  \: x_{2}  \: is \: odd. \\  \\ here \: f(x_{1}) = f(x_{2}) =  &gt; x_{1}  - 1 = x_{2}  + 1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  &gt; x_{1} - x_{2} = 2 \\  \\ </p><p>

Which is impossible.

(3).when \:  x_{1} \: and  \: x_{2}  \: are \:  both \: odd.\\  \\ here \: f(x_{1}) = f(x_{2}) =  &gt; x_{1} + 1 = x_{2}  +  1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  &gt; x_{1}  =  x_{2} \\  \\ </p><p>

∴ 'f' is one- one.

(4).when \:  x_{1} \: and  \: x_{2}  \: are \:  both \:even.\\  \\ here \: f(x_{1}) = f(x_{2}) =  &gt; x_{1}  -  1 = x_{2}   -  1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  &gt; x_{1}  =  x_{2} </p><p>

∴'f' is one-one.

Onto:

Let 'x' be an arbitrary natural number.

when x is an odd natural number , then there exists an even natural number (x+1) such that:

f(x + 1) = (x + 1) - 1 = x

when x is an even natural number , then there exists an odd natural number (x-1) such that:

f(x - 1) = (x - 1) + 1 = x

∴ Each x ∈ N has its pre-image in N.

Thus 'f' is Onto.

Hence , 'f' is both one- one and onto.

Similar questions