Math, asked by Anonymous, 20 days ago

Show that the function
f : N➔N, defined by
f(n) = n² + n + 1 for all n∈N is
one-one but not onto function.
 \rule{190pt}{2pt}

Answers

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Given that,

\rm \: f : N \:  \to \: N \: given \: by \\

\rm \: f(n) =  {n}^{2} + n + 1 \\

Step :- 1 One - One function

Let assume that x, y ∈ N such that

\rm \: f(x) = f(y) \\

\rm \:  {x}^{2} + x + 1 =  {y}^{2} + y + 1 \\

\rm \:  {x}^{2} + x =  {y}^{2} + y \\

\rm \:  {x}^{2} + x -  {y}^{2}  -  y = 0 \\

\rm \: ( {x}^{2} -  {y}^{2}) + (x - y) = 0 \\

\rm \: (x + y)(x - y) + (x  -  y) = 0 \\

\rm \: (x - y)(x + y + 1) = 0 \\

\rm\implies \:\rm \: x - y = 0 \:   \:  \:  \: \{ as \:x + y + 1 \ne \: 0  \: as \: x,y \in \: N \} \\

\rm\implies \:x = y \\

\rm\implies \:f(n) \: is \: one \:  -  \: one \\

Step :- 2 Onto

Let if possible there exist an element y ∈ N such that

\rm \: f(n) = y \\

\rm \:  {n}^{2} + n + 1 = y \\

\rm \:  {n}^{2} + n + 1 - y  = 0\\

Now, its a quadratic in n, so as to get the value of n, we use Quadratic Formula, taking positive square root, we get

\rm \: n = \dfrac{ - 1  \:  +  \:  \sqrt{ {1}^{2}  - 4(1)(1 - y)} }{2(1)}  \\

\rm \: n = \dfrac{ - 1  \:   +  \:  \sqrt{ 1 - 4 + 4y} }{2}  \\

\rm \: n = \dfrac{ - 1  \:   +  \:  \sqrt{ 4y - 3} }{2}  \\

Let assume that, y = 1, so we get

\rm \: n = \dfrac{ - 1  \:   +  \:  \sqrt{ 4 - 3} }{2}  \\

\rm \: n = \dfrac{ - 1  \:   +  \:  \sqrt{1} }{2}  \\

\rm \: n = \dfrac{ - 1  \:   +  \:  1 }{2}  \\

\rm\implies \:n = 0 \:  \cancel \in \: N \\

\rm\implies \:y = 1 \: donot \: have \: any \: pre - image \\

\rm\implies \:f(n) \: is \: not \: onto \\

Hence,

\rm \: f : N \:  \to \: N \: given \: by \\

\rm \: f(n) =  {n}^{2} + n + 1 \: is \: one - one \: but \: not \: onto. \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. One - One or injective function :- If f is a function from A to B such that distinct elements in A has distinct images in B.

2. Onto or Surjective function :- If f is a function from A to B such that every element in B has atleast one pre - image in A.

3. Bijective function :- A function f from A to B is bijective iff function is one - one and onto.


amansharma264: Excellent
Answered by Anonymous
38

Step-by-step explanation:

Given

f(x) = 2x

One-One

 \bf \: f(x_{2}) = 2x_{2} \\ \bf f(x_{1}) = 2x_{1}

Putting

 \bf \: f(x_{1}) = f(x_{2}) \\ \bf 2x_{1} = 2x_{2} \\ \bf x_{1} = x_{2}

 \blue{ \bf \: Hence,  \: if  \: f(x_{1}) = f(x_{2}), x_{1} = x_{2}}  \\ \blue{ \bf function  \: f  \: is \:  one-one}

Onto

f(x) = 2x

  \red{\bf \: Let  \: f(x) = y ,such  \: that \:  y  \in  \: N 2x = y x =  \frac{y}{2} }  \bf \: If y = 1 \: x =  \frac{1}{2} = 0.5 x  \: in \:  N , \\  \bf which \:  is \:  not \:  possible \:  as \: x \:  \in  N \boxed{  \purple{\bf \: Hence, \:  f  \: is \:  not \:  onto}}

learn more:

F:N to N defined by f(m)=m^2+m+3 is one one function

 \bf \:  https://brainly.in/question/15692713

Similar questions