Show that the function f : NN
defined by f (m) = m² + 2m +3 is
- one
Answers
Answered by
2
Step-by-step explanation:
We have, f(x)=x2+x+1
Calculate f(x1):
⇒ f(x1)=x12+x1+1
Calculate f(x1):
⇒ f(x2)=x22+x1+1
Now, f(x1)=f(x2)
⇒ x12+x1+1=x22+x2+1
⇒ x12−x22+x1−x2=0
⇒ (x1−x2)(x1+x2)+x1−x2=0......... [ Since,
(a2−b2=(a+b)(a−b) ]
⇒ (x1−x2)(x1+x2+1)=0
Since, x1+x2+1=0 for any x∈N
∴ x1=x2
So, f is one-one function.
Clearly, f(x)=x2+x+1≥3 for all x∈N
So, f(x) does not assume values 1 and 2.
∴ f is not an onto function.
Similar questions