Math, asked by vineet28003, 5 months ago

Show that the function g(x) = |x + 2| is not differentiable at x = - 2 .​

Answers

Answered by amitnrw
1

Given : g(x) = |x + 2|

To Find : Show that  not differentiable at x = - 2 .​

Solution:

differentiable  if  

LHD = RHD

LHD =

Lim (h → 0)  (g(x) -g(x - h) )/h  

=  Lim (h → 0)  (g(-2) -g(-2 - h) )/h  

= Lim (h → 0)  (|-2 + 2|  - (-2 - h+2) )/h

= Lim (h → 0)  (0  - |-h|)/h

|-h| = h

= Lim (h → 0)  (0 - h  )/h

= Lim (h → 0)  -h/h

=  Lim (h → 0)   -1

= - 1

RHD

Lim (h → 0)  (g(x+h) -g(x) )/h  

=  Lim (h → 0)  (g(-2+h) -g(-2) )/h  

= Lim (h → 0)  (|-2 + h +2|  - (-2+2) )/h

= Lim (h → 0)  (|h|   -0)/h

= Lim (h → 0)  (h - 0 )/h

= Lim (h → 0)   h/h

=  Lim (h → 0)    1

=   1

1 ≠ 1

LHD  ≠ RHD

Hence not differentiable at x = - 2

Learn More:

सिद्ध कीजिए कि महत्तम पूर्णाक फलन f(x ...

https://brainly.in/question/15286200

[x], then f(x)

https://brainly.in/question/22018942

Answered by pulakmath007
6

SOLUTION

TO PROVE

The function g(x) = |x + 2| is not differentiable at x = - 2

EVALUATION

Here the given function is g(x) = |x + 2|

Now we have to check the differentiability of g(x) at x = - 2

Now by definition of modulus function

\sf  |x + 2|   = \begin{cases} & \sf{ \:  \:  \:  \: (x + 2) \:   \:  \: \: when \: x >  - 2} \\  \\ & \sf{ - (x + 2) \:  \:  \:  \:  \: when \: x \leqslant  - 2}  \end{cases}\\ \\

∴ g(-2) = 0

Left hand derivative at x = - 2

 = \displaystyle \sf{ \lim_{x \to 2  - }  \:  \frac{g(x) - g( - 2)}{x  - ( - 2)} }

 = \displaystyle \sf{ \lim_{x \to 2  - }  \:  \frac{ - (x  +2 ) }{ \:  \:  \:  \: (x   +  2)} }

 =  - 1

Right hand derivative at x = - 2

 = \displaystyle \sf{ \lim_{x \to 2   +  }  \:  \frac{g(x) - g( - 2)}{x  - ( - 2)} }

 = \displaystyle \sf{ \lim_{x \to 2   +  }  \:  \frac{  (x  +2 ) }{ (x   +  2)} }

 = 1

Hence at x = - 2

Left hand derivative ≠ Right hand derivative

g(x) = |x + 2| is not differentiable at x = - 2

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. let 5f(x)+ 3f(1/x)=x+2 and y= xf(x) .

then x=1 point dy/dx=?

https://brainly.in/question/19870192

2. Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of

√[[f(x)]^2+ [g (x)]^2] W. r. to. x. is

https://brainly.in/question/18312318

Similar questions