Math, asked by devansh9257, 19 days ago

Show that the function is always increasing

f(x) = log(1 + x) -  \frac{2x}{x + 2}

Answers

Answered by mathdude500
36

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = log(1 + x) - \dfrac{2x}{x + 2}

Let first define the domain of f(x).

Now, log(1 + x) is defined when x + 1 > 0

Now, Consider

\rm \: f(x) = log(1 + x) - \dfrac{2x}{x + 2}

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}f(x) =\dfrac{d}{dx}\bigg[ log(1 + x) - \dfrac{2x}{x + 2}\bigg]

We know,

\boxed{\tt{ \dfrac{d}{dx}logx \:  =  \:  \frac{1}{x}}} \\

and

\boxed{\tt{ \dfrac{d}{dx} \frac{u}{v} =  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} } \: }} \\

So, using these results, we get

\rm \: f'(x) = \dfrac{1}{x + 1} - \dfrac{(x + 2)\dfrac{d}{dx}2x - 2x\dfrac{d}{dx}(x + 2)}{ {(x + 2)}^{2} }

We know,

\boxed{\tt{ \dfrac{d}{dx}x = 1 \: }} \\

and

\boxed{\tt{ \dfrac{d}{dx}k = 0 \: }} \\

So, using this result, we get

\rm \: f'(x) = \dfrac{1}{x + 1} - \dfrac{(x + 2)2 - 2x(1 + 0)}{ {(x + 2)}^{2} }

\rm \: f'(x) = \dfrac{1}{x + 1} - \dfrac{2x + 4 - 2x}{ {(x + 2)}^{2} }

\rm \: f'(x) = \dfrac{1}{x + 1} - \dfrac{4 }{ {(x + 2)}^{2} }

\rm \: f'(x) = \dfrac{ {(x + 2)}^{2}  - 4(x + 1)}{(x + 1) {(x + 2)}^{2} }

\rm \: f'(x) = \dfrac{ {x}^{2} + 4 + 4x   - 4x - 4}{(x + 1) {(x + 2)}^{2} }

\rm \: f'(x) = \dfrac{ {x}^{2} }{(x + 1) {(x + 2)}^{2} }

Now, as

\rm \:  {x}^{2} \geqslant 0

\rm \:  {(x + 2)}^{2}  >  0

\rm \:  x + 1  >  0

So,

\rm\implies \:\rm \: f'(x) = \dfrac{ {x}^{2} }{(x + 1) {(x + 2)}^{2} } \geqslant 0

\rm\implies \:\rm \: f'(x) \: is \: always \: increasing \: when \: x >  - 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions