Math, asked by Anonymous, 9 days ago

Show that the function  \sf f \rightarrow R : R and \sf x \in R defined by \sf f(x) = \dfrac{x}{1 + |x|} is a bijective function. ​

Answers

Answered by mathdude500
16

Basic Concept Used

In order to prove that f(x) is bijective, it is sufficient to show that f(x) is one - one as well as onto.

One - One function:-

A function f(x) defined from R to R,

Then to show function is one-one, we choose x,y belongs to R such that f(x) = f(y), if on simplifying x = y, then f(x) is one - one.

Onto Function :-

Let if possible there exist an element y belongs to R such that y = f(x), then express x = g(y), if x belongs to R, then f(x) is onto.

Let's solve the problem now!!!

\green{\large\underline{\sf{Solution-}}}

Let us first define the function f(x).

\blue{\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{\dfrac{x}{1 - x}  \:  \: when \: x < 0} \\ &\sf{\dfrac{x}{1 + x}  \:  \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}}

 \bf :\longmapsto\: \: Range \: of \: f(x) \in \: ( - 1, \: 1)

So,

Let us consider the First case

\red{\rm :\longmapsto\: \bf \: When \: x \:  <  \: 0}

\red{\rm :\longmapsto\: \bf \:\: f(x) \:   =  \: \dfrac{x}{1 - x} }

One - One

Let us consider two elements x < 0 and y < 0 such that

\rm :\longmapsto\:f(x) = f(y)

\rm :\longmapsto\:\dfrac{x}{1 - x}  = \dfrac{y}{1 - y}

\rm :\longmapsto\:x - xy = y - xy

\bf\implies \:x = y

\bf :\longmapsto\:Hence, \: f(x) \: is \: one - one

Onto :-

Let if possible there exist an element y belongs (- 1, 0),

When x < 0,

\rm :\longmapsto\:f(x) = \dfrac{x}{1 - x}  &lt; 0

Also,

\rm :\longmapsto\:f(x) = \dfrac{x}{1 - x}   = \dfrac{x - 1 + 1}{1 - x}

\rm \:  =  \:  \: \dfrac{ - (1 - x) + 1}{1 - x}

\rm \:  =  \:  \: \dfrac{ - (1 - x)}{1 - x}  + \dfrac{1}{1 - x}

\rm \:  =  \:  \: - 1  + \dfrac{1}{1 - x}

\bf\implies \:f(x) &gt;  - 1

\bf :\longmapsto\:Hence, \:  - 1 &lt; f(x) &lt; 0 -  - (1)

\bf :\longmapsto\:Hence, \: f(x) \: is \: onto

Let us Consider the second case :-

 \red{\rm :\longmapsto\: \bf \: When \: x \:  \geqslant  \: 0}

\red{\rm :\longmapsto\: \bf \:\: f(x) \:   =  \: \dfrac{x}{1 + x} }

One - One

 \sf \: Let \: us \: consider \: two \: elements \: x \: and \: y \:  \geqslant  \: 0 \: such \: that

\rm :\longmapsto\:f(x) = f(y)

\rm :\longmapsto\:\dfrac{x}{1  +  x}  = \dfrac{y}{1  +  y}

\rm :\longmapsto\:x  +  xy = y  +  xy

\bf\implies \:x = y

\bf :\longmapsto\:Hence, \: f(x) \: is \: one - one

Onto :-

Let if possible there exist an element y belongs [0, 1),

\rm :\longmapsto\:When \: x \geqslant 0

\rm :\longmapsto\:f(x) = \dfrac{x}{1  +  x}   \geqslant  0

Also,

\rm :\longmapsto\:f(x) = \dfrac{x}{1  +  x}   = \dfrac{x  +  1  -  1}{1 + x}

\rm \:  =  \:  \: \dfrac{x + 1}{x + 1}  - \dfrac{1}{x + 1}

\rm \:  =  \:  \: 1 - \dfrac{1}{x + 1}

\bf\implies \:f(x) &lt; 1

\bf :\longmapsto\:Hence, \:  0 \leqslant  f(x) &lt; 1 -  - (2)

\bf :\longmapsto\:Hence, \: f(x) \: is \: onto

So,

From equation (1) and equation (2), we get

\rm :\longmapsto\: - 1 &lt; f(x) &lt; 1

\bf :\longmapsto\:Hence, \: f(x) \: is \: one - one \: and \: onto

\bf :\longmapsto\:Hence, \: f(x) \: is \: bijective

\rm :\implies\:f : R\to \: ( - 1,1)\:given\: by\:f(x)=\dfrac{x}{1+|x|}\:is\:bijective

Similar questions