Math, asked by zezealomary, 6 months ago

Show that the given conditional statement ¬ (p → q) → p is a tautology

Answers

Answered by shadowsabers03
4

We know that,

\displaystyle\sf{\longrightarrow p\implies q \equiv \lnot p\lor q}

Thus,

\displaystyle\sf{\longrightarrow \lnot(p\implies q)\implies p\equiv\lnot (\lnot p\lor q)\implies p}

Taking \displaystyle\sf {\lnot p\lor q=r,}

\displaystyle\sf{\longrightarrow \lnot(p\implies q)\implies p\equiv\lnot r\implies p}

\displaystyle\sf{\longrightarrow \lnot(p\implies q)\implies p\equiv r\lor p}

\displaystyle\sf{\longrightarrow \lnot(p\implies q)\implies p\equiv (\lnot p\lor q)\lor p}

\displaystyle\sf{\longrightarrow \lnot(p\implies q)\implies p\equiv \lnot p\lor q\lor p}

\displaystyle\sf{\longrightarrow \lnot(p\implies q)\implies p\equiv (\lnot p\lor p)\lor q}

The statement contains \displaystyle\sf {\lnot p\lor p} which is always true for any truth value of \displaystyle\sf {p,} whether \displaystyle\sf {p} is true or false, and no matter what the truth value of \displaystyle\sf {q} is.

This implies our statement is a tautology.

Hence Proved!

Answered by Anonymous
4

GIVEN:

  • ¬ (p → q) → p

TO PROVE:

  • ¬ (p → q) → p is a tautology

SOLUTION:

Here,

we know that,

\tt{↣ p\implies q \equiv \lnot p\lor q}

Thus,

\tt{↣ \lnot(p\implies q)\implies p\equiv\lnot (\lnot p\lor q)\implies p}

 \tt{ ↣now \:  take  \lnot p\lor q=r,}

 \tt{↣ \lnot(p\implies q)\implies p\equiv\lnot r\implies p}

 \tt{↣ \lnot(p\implies q)\implies p\equiv r\lor p}

 \tt{↣ \lnot(p\implies q)\implies p\equiv (\lnot p\lor q)\lor p}

 \tt{↣ \lnot(p\implies q)\implies p\equiv \lnot p\lor q\lor p}

 \tt{↣\lnot(p\implies q)\implies p\equiv (\lnot p\lor p)\lor q}

 \tt{here \: The \:  statement  \: contains  \lnot p\lor p}

 \tt{\:  which \:  is  \: true  \: forever \: for \:  any  \: true \: value}

 \tt{of \:  p, or \: whether  \: p  \: is  \: true  \: or \:  false, no }

 \tt{matter \:  what \:  the \:  truth  \: value  \: of  \: q \: is.}

So, this implies that our statement is a tautology.

Similar questions