Show that the given points form a right angled triangle and check whether they satisfies Pythagoras theorem L(0,5) M(9,12) N(3,14)
Answers
Answer:
Yes the given points form a right angled triangle.
Step-by-step explanation:
Given : Points L(0,5) M(9,12) N(3,14).
To find : Show that the given points form a right angled triangle and check whether they satisfies Pythagoras theorem?
Solution :
First we find the length of the sides of the triangles using distance formula,
The distance between L(0,5) M(9,12)
The distance between M(9,12) N(3,14)
The distance between L(0,5) N(3,14)
Now, If these form a right angle then Pythagoras theorem should satisfy i.e.
Where, H is the longest side.
So, Let , ,
LHS,
RHS,
LHS=RHS.
Therefore, Yes the given points form a right angled triangle.
Step-by-step explanation:
First we find the length of the sides of the triangles using distance formula,
d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
The distance between L(0,5) M(9,12)
LM=\sqrt{(9-0)^2+(12-5)^2}LM=
(9−0)
2
+(12−5)
2
LM=\sqrt{81+49}LM=
81+49
LM=\sqrt{130}LM=
130
The distance between M(9,12) N(3,14)
MN=\sqrt{(3-9)^2+(14-12)^2}MN=
(3−9)
2
+(14−12)
2
MN=\sqrt{36+4}MN=
36+4
MN=\sqrt{40}MN=
40
The distance between L(0,5) N(3,14)
LN=\sqrt{(3-0)^2+(14-5)^2}LN=
(3−0)
2
+(14−5)
2
LN=\sqrt{9+81}LN=
9+81
LN=\sqrt{90}LN=
90
Now, If these form a right angle then Pythagoras theorem should satisfy i.e.
H^2=B^2+P^2H
2
=B
2
+P
2
Where, H is the longest side.
So, Let H=LM=\sqrt{130}H=LM=
130
, P=MN=\sqrt{40}P=MN=
40
, B=LN=\sqrt{90}B=LN=
90
LHS, H^2=(\sqrt{130})^2=130H
2
=(
130
)
2
=130
RHS, B^2+P^2=(\sqrt{40})^2+(\sqrt{90})^2=40+90=130B
2
+P
2
=(
40
)
2
+(
90
)
2
=40+90=130
LHS=RHS.
Therefore, Yes the given points form a right angled triangle.