Math, asked by manishram22, 8 months ago

Show that the images of the complex numbers 3+2i, 5i, -3+2i, -i form a square.​

Answers

Answered by MaheswariS
7

\underline{\textsf{Given:}}

\textsf{Points are 3+2i, 5i, -3+2i, -i}

\underline{\textsf{To prove:}}

\textsf{The given complex numbers form a square}

\underline{\textsf{Solution:}}

\textsf{Let A,B,C and D be the points represented by the}

\textsf{complex numbers 3+2i, 5i, -3+2i and -i respectively}

\mathsf{AB=|(3+2i)-5i|}

\mathsf{AB=|3-3i|}

\mathsf{AB=\sqrt{3^2+(-3)^2}=\sqrt{9+9}=\sqrt{18}}

\mathsf{BC=|5i-(-3+2i)|}

\mathsf{BC=|-3+3i|}

\mathsf{BC=\sqrt{(-3)^2+(3)^2}=\sqrt{9+9}=\sqrt{18}}

\mathsf{CD=|(-3+2i)-i|}

\mathsf{CD=|-3-3i|}

\mathsf{CD=\sqrt{(-3)^2+(-3)^2}=\sqrt{9+9}=\sqrt{18}}

\mathsf{AD=|(3+2i)+i|}

\mathsf{AD=|3+3i|}

\mathsf{AD=\sqrt{3^2+(-3)^2}=\sqrt{9+9}=\sqrt{18}}

\mathsf{AB=BC=CD=AD}

\implies\textsf{All sides are equal}

\mathsf{AC=|(3+2i)-(-3+2i)|}

\mathsf{AC=|6|=6}

\textsf{Now}

\mathsf{AB^2+BC^2}

\mathsf{=18+18}

\mathsf{=36}

\mathsf{=AC^2}

\implies\mathsf{\angle{B}=90^{\circ}}

\textsf{Hence ABCD is a square}

Similar questions