show that the line segment joining the midpoints of a pair of opposite sides of parallelogram divides it into two equal parallelograms..........
Do it in steps..
Answers
Answered by
10
✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶
SEE THE GIVEN ATTACHMENT
✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶
.
Attachments:
ShreyaVirat:
hii bro
Answered by
2
______________________________
In ||gm ABCD, E is the mid-point of AB and F is the mid-point of DC. Also AB|| DC.
AB = DC and AB || DC
∴ (1/2)AB = (1/2)DC and AE || DF (Since E and F mid point of AB and DC)
∴ AE = (1/2)AB and DF = (1/2)DC
∴ AE = DF and AE || DF
∴Quadrilateral AEFD is a parallelogram Similarly, Quadrilateral EBCF is a parallelogram.
Now parallelogram AEFD and EBCF are on equal bases DF = FC and between two parallels AB and DC
∴ ar(||gm AEFD) = ar(||gm EBCF)
Attachments:
Similar questions