Show that the line segment joining the points A(-5,8) and B(10,-4) is trisected by the co-ordinate axes.
Answers
Answer.....
AP=PQ=QB
AP:PB=1:2
here, P is the point.
STEPS...
answer=(0,4)
P lies on the y-axis
Q lies on the x-axis
AQ:QB=2:1
answer =5,0
A and B are the trisected by co-cordinate axis.
AQ=QB
Step-by-step explanation:
Given points are A(-5,8) and B(10,-4).
Let p(x,0) and Q(0,y) be the points on coordinate axes that trisects AB.
(i)
Let the ratio in which p divides AB be m:n
Now,
P(x,0), (x₁,y₁) = (-5,8) and (x₂,y₂) = (10,-4) and in the ratio of m:n.
⇒ 0 = (my₂ + ny₁)/(m + n)
⇒ 0 = m(-4) + n(8)/m + n
⇒ -4m + 8n = 0
⇒ -4m = -8n
⇒ 4m = 8n
⇒ (m/n) = (8/4)
⇒ m : n = 2 : 1
Thus, P divides AB in the ratio 2 : 1.
For P(x,0), m = 2, n = 1, (x₁,y₁) = (-5,8) and (x₂,y₂) = (10,-4).
⇒ x = (mx₂ + nx₁)/(m + n)
⇒ x = [2(10) + 5]/(3)
⇒ x = 5
Therefore, the coordinates of P are (5,0).
(ii)
Let the ratio in which Q divides AB be a : b.
Now, Q(0,y), (x₁,y₁) = (-5,8) and (x₂,y₂) = (10,-4) divides in the ratio a : b.
⇒ 0 = (mx₂ + nx₁)/(m + n)
⇒ 0 = a(10) + b(-5)/(a + b)
⇒ 0 = 10a - 5b
⇒ 10a = 5b
⇒ (a/b) = 5/10
⇒ a : b = 1 : 2
Thus, Q divides AB in the ratio 1 : 2.
For Q(0,y), m = 1, n = 2.
⇒ y = (my₂ + ny₁)/(m + n)
= (-4 - 8)/3
= 4
Therefore, the coordinates of Q are (4,0).
Now,
From (i)
AP/PB = 2/1
⇒ AP = 2PB
From (ii)
AQ/QB = 1/2
⇒ 2AQ = QB
Now,
(iii)
AP + PB = AB
2PB + PB = AB
3PB = AB
PB = (1/3) AB
(iv)
AQ + QB = AB
⇒ AQ + 2AQ = AB
⇒ 3AQ = AB
⇒ AQ = (1/3)AB
From (iii),(iv)
PB = AQ. ----- (v)
Also,
QB = QP + PB
⇒ 2AQ = QP + AQ
⇒ AQ = QP ---------- (vi)
From (v),(vi)
AQ = QP = PB
Hope it helps!