Show that the line y = x + √7 touches the hyperbola 9x² – 16y² = 144
(Spammers Stay Away)
Answers
Answered by
31
Answer:
➡The line may touch the hyperbola.
➡![y = mx + \sqrt{ {a}^{2} {m}^{2} - {b}^{2} } \: \: \: be \: the \: equation. y = mx + \sqrt{ {a}^{2} {m}^{2} - {b}^{2} } \: \: \: be \: the \: equation.](https://tex.z-dn.net/?f=y+%3D+mx+%2B++%5Csqrt%7B+%7Ba%7D%5E%7B2%7D++%7Bm%7D%5E%7B2%7D++-++%7Bb%7D%5E%7B2%7D+%7D++%5C%3A++%5C%3A++%5C%3A+be+%5C%3A+the+%5C%3A+equation.)
➡![and \: condition \: is \: c = + \sqrt{ {a}^{2} {m}^{2} - {b}^{2} } and \: condition \: is \: c = + \sqrt{ {a}^{2} {m}^{2} - {b}^{2} }](https://tex.z-dn.net/?f=and+%5C%3A+condition+%5C%3A+is+%5C%3A+c+%3D++%2B++%5Csqrt%7B+%7Ba%7D%5E%7B2%7D++%7Bm%7D%5E%7B2%7D+-++%7Bb%7D%5E%7B2%7D++%7D++)
➡![\sqrt{7} = + \sqrt{16 \times {1}^{2} \: - 9 } \\ \sqrt{7} = + \sqrt{16 \times {1}^{2} \: - 9 } \\](https://tex.z-dn.net/?f=+%5Csqrt%7B7%7D++%3D++%2B++%5Csqrt%7B16+%5Ctimes++%7B1%7D%5E%7B2%7D+%5C%3A++-+9+%7D++%5C%5C+)
➡![\sqrt{7} = + \sqrt{16 - 19} \\ \sqrt{7} = + \sqrt{16 - 19} \\](https://tex.z-dn.net/?f=+%5Csqrt%7B7%7D++%3D++%2B++%5Csqrt%7B16+-+19%7D++%5C%5C+)
➡![\sqrt{7} = + \sqrt{7} \\ hence \: proved. \\ \sqrt{7} = + \sqrt{7} \\ hence \: proved. \\](https://tex.z-dn.net/?f=+%5Csqrt%7B7%7D++%3D++%2B++%5Csqrt%7B7%7D++%5C%5C+hence+%5C%3A+proved.+%5C%5C+)
Answered by
20
This is your answer.
Hope it will help you..
Attachments:
![](https://hi-static.z-dn.net/files/d97/bd79b241a932e77568554d47372498f0.jpg)
Similar questions