Math, asked by tameemtaj170, 1 year ago

Show that the lines \frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \ and \frac{x}{1}=\frac{y}{2}=\frac{z}{3} are perpendicular to each other.

Answers

Answered by hukam0685
0

Answer:

Yes,these lines are perpendicular.

Step-by-step explanation:

To show that the lines

\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \ and \\\\\frac{x}{1}=\frac{y}{2}=\frac{z}{3}

are perpendicular to each other.

We know that two lines given below

\frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1} \ and \\\\\frac{x-x_2}{a_2}=\frac{y-y_2}{b_2}=\frac{z-z_2}{c_2}

these two lines are perpendicular only if

a_1a_2 + b_1b_2 + c_1c_2= 0 \\  \\

in the given equations

a_1 = 7 \\  \\ b_1 =  - 5 \\  \\ c_1 = 1 \\  \\ a_2 = 1 \\  \\ b_2 = 2 \\  \\ c_2 = 3 \\  \\

 = 7 \times 1 - 5 \times 2 + 1 \times 3 \\  \\  = 7 - 10 + 3 \\  \\  = 10 - 10 \\  \\   = 0 \\  \\

it proves that both lines are perpendicular.

Hope it helps you.

Answered by pulakmath007
5

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

Two lines

 \displaystyle \sf{  \frac{x -x_1 }{ a_1 }  =   \frac{y -y_1 }{ b_1 }  = \frac{z -z_1 }{ c_1 }  \:   \: } \:  \: and \:  \: \frac{x -x_2 }{ a_2 }  =   \frac{y -y_2 }{ b_2 }  = \frac{z -z_2 }{ c_2 }

are perpendicular if

 \displaystyle \sf{  {a_1a_2  + b_1b _2+ c_1c_2 } = 0 }

CALCULATION

Comparing the given equation with with

 \displaystyle \sf{  \frac{x -x_1 }{ a_1 }  =   \frac{y -y_1 }{ b_1 }  = \frac{z -z_1 }{ c_1 }  \:   \: } \:  \: and \:  \: \frac{x -x_2 }{ a_2 }  =   \frac{y -y_2 }{ b_2 }  = \frac{z -z_2 }{ c_2 }   \:  \: we \: get

 \displaystyle \sf{  {a_1 = 7  \:  ,  b_1 =  - 5 \: ,  \:  c_1 } = 1 }   \:  \: and

 \displaystyle \sf{  {a_2= 1  \:  ,  b_2 =  2 \: ,  \:  c_2 } = 3 }

Now

 \displaystyle \sf{  {a_1a_2  + b_1b _2+ c_1c_2 }  }

  = \displaystyle \sf{  (7 \times 1)  + ( - 5 \times 2) + (1 \times 3) }

  = \displaystyle \sf{  7 - 10 + 3 }

  = \displaystyle \sf{ 0 }

Hence the given two lines are perpendicular

Similar questions