Math, asked by PragyaTbia, 1 year ago

Show that the lines x² - 4xy + y² = 0 and x + y = √6 form an equilateral triangle. Find its area and perimeter.

Answers

Answered by amitnrw
3

Given : lines x² - 4xy + y² = 0 and x + y = √6 form an  equilateral triangle.

To find :  area and perimeter of triangle

Solution:

x² - 4xy + y²  = 0

=> (x - y)²  -2xy  = 0

=>  (x - y)²  = 2xy

x = 0 , y = 0  Satisfy this

x + y = √6 &  x² - 4xy + y²  = 0

=> x² - 4x(√6 - x) + (√6 - x)² = 0

=> x²  - 4x√6 + 4x²  + 6 + x²  - 2x√6  = 0

=> 6x² - 6x√6  + 6 = 0

=> x² -  x√6  + 1 = 0

=> x =  (√6  ±  √2)/2

x =  (√6 +  √2)/2   ,  (√6 -  √2)/2  

using x + y = √6

y = (√6 -  √2)/2   ,  (√6 +  √2)/2

(0 , 0)   ,  (  (√6 +  √2)/2 , (√6 -  √2)/2  )     &    (  (√6-  √2)/2 , (√6 + √2)/2  )  

are three vertex of triangle

(0 , 0)   ,  (  (√6 +  √2)/2 , (√6 -  √2)/2  )   = √ (6 + 2 + 2√12)/4 +  (6 + 2 - 2√12)/4  =  √ 4  = 2

(0 , 0)  ,  (  (√6-  √2)/2 , (√6 + √2)/2  )    = √ (6 + 2 - 2√12)/4 +  (6 + 2 +2√12)/4  =  √ 4  = 2

(  (√6 +  √2)/2 , (√6 -  √2)/2  )     &    (  (√6-  √2)/2 , (√6 + √2)/2  )  

= √ (-√2)² + (√2)² =  √4  = 2

Hence length of all Sides =  2

Perimeter =  2 + 2 + 2 = 6  unit

Area = (√3 / 4)(2)² = √3 sq unit

Perimeter =   6  unit  & area= √3 sq unit

Learn more:

The lines xy = 0 and x + y = 17 from a triangle in the x-y plane. The ...

https://brainly.in/question/13372578

find orthocentre of the Triangle formed by the lines X + 2 Y=0,4 x + ...

https://brainly.in/question/1065066

Similar questions