Math, asked by triptichauhan100, 3 days ago

Show that the matrix is Hermitian where = [ 2 3 − 4 3 + 4 2 ]​

Answers

Answered by rithishm21110
1

Answer:

Solution

Given A=

 

2+3i

−3−i

3−2i

 

2

7

i

 

5

3−i

2+i

 

Transpose of the matrix A is,

A

T

=

 

2+3i

2

5

 

−3−i

7

3−i

 

3−2i

i

2+i

 

Thus, Conjugate of transpose of matrix A is,

A

T

ˉ

=

 

2−3i

2

5

 

−3+i

7

3+i

 

3+2i

−i

2−i

 

Now, Hermitian matrix P=

2

1

[A+

A

T

ˉ

]

∴P=

2

1

 

 

 

2+3i

−3−i

3−2i

 

2

7

i

 

5

3−i

2+i

 

+

 

2−3i

2

5

 

−3+i

7

3+i

 

3+2i

−i

2−i

 

 

∴P=

2

1

 

 

2+3i+2−3i

−3−i+2

3−2i+5

 

2−3+i

7+7

i+3+i

 

5+3+2i

3−i−i

2+i+2−i

 

∴P=

2

1

 

 

4

−1−i

8−2i

 

−1+i

14

2i+3

 

8+2i

3−2i

4

 

Similarly, Q=

2

1

{A−

A

T

ˉ

}

∴Q=

2

1

 

 

 

2+3i

−3−i

3−2i

 

2

7

i

 

5

3−i

2+i

 

 

2−3i

2

5

 

−3+i

7

3+i

 

3+2i

−i

2−i

 

 

∴Q=

2

1

 

 

2+3i−(2−3i)

−3−i−2

3−2i−5

 

2−(−3+i)

7−7

i−(3+i)

 

5−(3+2i)

3−i−(−i)

2+i−(2−i)

 

∴Q=

2

1

 

 

2+3i−2+3i

−3−i−2

3−2i−5

 

2+3−i

7−7

i−3−i

 

5−3−2i

3−i+i

2+i−2+i

 

∴Q=

2

1

 

 

6

−5−i

−2−2i

 

5−i

0

−3

 

2−2i

3

2i

 

Thus, A=P+Q

Similar questions