show that the maximum fractional error in the product of two quantities is equal to the sum of the fractional errors in the individual quantities
Answers
Explanation:
How to convert decimal to binary
Conversion steps:
Divide the number by 2.
Get the integer quotient for the next iteration.
Get the remainder for the binary digit.
Repeat the steps until the quotient is equal to 0.
Example #1
Convert 1310 to binary:
Division
by 2 Quotient Remainder Bit #
13/2 6 1 0
6/2 3 0 1
3/2 1 1 2
1/2 0 1 3
So 1310 = 11012
Example #2
Convert 17410 to binary:
Division
by 2 Quotient Remainder Bit #
174/2 87 0 0
87/2 43 1 1
43/2 21 1 2
21/2 10 1 3
10/2 5 0 4
5/2 2 1 5
2/2 1 0 6
1/2 0 1 7
So 17410 = 101011102
Decimal to binary conversion table
Decimal
Number Binary
Number Hex
Number
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11
18 10010 12
19 10011 13
20 10100 14
21 10101 15
22 10110 16
23 10111 17
24 11000 18
25 11001 19
26 11010 1A
27 11011 1B
28 11100 1C
29 11101 1D
30 11110 1E
31 11111 1F
32 100000 20
64 1000000 40
128 10000000 80
256 100000000 100
Hope.it helps!! When the two quantities are multiplied the relative error in the final result is the sum of the relative errors of the individual quantities