Physics, asked by niharika2904, 9 months ago

Show that the maximum fractional error in the product of two quantities is equal to the sum of the
fractional errors in the individual quantities.

Answers

Answered by Anonymous
28

Answer:

Explanation:

Here is your answer

Attachments:
Answered by aliyasubeer
1

Answer:

Maximum % error in $\mathrm{x} = maximum % error in $\mathrm{a}+ maximum % error in b.

                                                   \\&\frac{\Delta x}{x}=\frac{\Delta a}{a}+\frac{\Delta b}{b}\end{aligned}$$

Explanation:

Suppose a result $\mathrm{x}$ is obtained by the product of two quantities say $\mathrm{a}$ and $\mathrm{b}$

i.e. $\mathbf{x}=\mathrm{a} \times \mathrm{b}$  (1)

Let $\Delta \mathrm{a}$ and $\Delta \mathrm{b}$ are absolute errors in the measurement of a and b. \Delta \mathrm{x}$ be the corresponding absolute error in \mathrm{x}$.

\therefore \mathrm{x} \pm \Delta \mathrm{x}=(\mathrm{a} \pm \Delta \mathrm{a}) \mathrm{x}(\mathrm{b} \pm \Delta \mathrm{b}) \\

\therefore \mathrm{x} \pm \Delta \mathrm{x}=\mathrm{ab} \pm \mathrm{a} \Delta \mathrm{b} \pm \mathrm{b} \Delta \mathrm{a} \pm \Delta \mathrm{a} \Delta \mathrm{b} \\\therefore \mathrm{x} \pm \Delta \mathrm{x}=\mathrm{x} \pm \mathrm{a} \Delta \mathrm{b} \pm \mathrm{b} \Delta \mathrm{a} \pm \Delta \mathrm{a} \Delta \mathrm{b} \\\therefore \pm \Delta \mathrm{x}=\pm \mathrm{a} \Delta \mathrm{b} \pm \mathrm{b} \Delta \mathrm{a} \pm \Delta \mathrm{a} \Delta \mathrm{b} \ .(2)

Dividing equation (2) by (1) we have

$$\begin{aligned}\pm \frac{\Delta x}{x} &=\pm \frac{b \Delta a}{a b} \pm \frac{a \Delta b}{a b} \pm \frac{\Delta a \Delta b}{a b} \\\therefore \pm \frac{\Delta x}{x} &=\pm \frac{\Delta a}{a} \pm \frac{\Delta b}{b} \pm \frac{\Delta a}{a} \times \frac{\Delta b}{b}\end{aligned}$$

$The quantities $\Delta \mathrm{a} / \mathrm{a}, \Delta \mathrm{b} / \mathrm{b}$ and $\Delta \mathrm{x} / \mathrm{x}$ are called relative errors in the values of $\mathrm{a}, \mathrm{b}$ and $\mathrm{x}$ respectively. The product of relative errors in $\mathrm{a}$ and b i.e. $\Delta \mathrm{a} \times \Delta \mathrm{b}$ is very small hence is neglected.$$\begin{aligned}&\therefore \pm \frac{\Delta x}{x}=\pm \frac{\Delta a}{a} \pm \frac{\Delta b}{b} \\&\therefore \frac{\Delta x}{x}=\frac{\Delta a}{a}+\frac{\Delta b}{b}\end{aligned}$$

Hence $ maximum relative error in $\mathrm{x}=$ maximum relative error in $\mathrm{a}+$ maximum relative error in $b$

Hence maximum % error in $\mathrm{x} = maximum % error in $\mathrm{a}+ maximum % error in b

Similar questions