Physics, asked by Grewal4092, 10 months ago

Show that the maximum height reached by a projectile launched at an angle 45degree is one quarter of the range

Answers

Answered by Anonymous
19

Solution :

Given:

✏ Angle of projection = 45°

To Prove:

✏ Max. Height = Range/4

Formula:

✏ Formula of Range and Max. Height in projectile motion is given by...

\boxed{\sf{\pink{\large{R=\dfrac{u^2\sin2\theta}{g}}}}}

\boxed{\sf{\purple{\large{H=\dfrac{u^2{\sin}^2\theta}{2g}}}}}

Calculation:

________________________________

  • Range

\implies\sf\:R =\dfrac{u^2\sin2(45\degree)}{g}\\ \\ \implies\sf\:R=\dfrac{u^2\sin90\degree}{g}\\ \\ \implies\sf\:\red{R=\dfrac{u^2}{g}}

________________________________

  • Max. Height

\implies\sf\:H=\dfrac{u^2{\sin}^2 45\degree}{2g}\\ \\ \implies\sf\:H=\dfrac{u^2(\dfrac{1}{\sqrt{2}})^2}{2g}\\ \\ \implies\sf\:\blue{H=\dfrac{u^2}{4g}}

________________________________

  • Relation between R and H

\mapsto\sf\:\dfrac{R}{H}=4\\ \\ \mapsto\:\boxed{{\sf{\orange{\large{H=\dfrac{R}{4}}}}}}

Hence, proved !!

Similar questions
Math, 1 year ago