Physics, asked by nk1234819, 9 months ago

• Show that the non-zero vectors A and B are perpendicular to each otger if a vector+b vector=a vector minus b vector​

Answers

Answered by Anonymous
28

Given :

\sf\:|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|

To Prove :

⟶ Both vectors (A and B) are perpendicular to each other.

Formula :

\dag\bf\:|\vec{A}+\vec{B}|=\sqrt{A^2+B^2+2AB\cos\theta}

\dag\bf\:|\vec{A}-\vec{B}|=\sqrt{A^2+B^2-2AB\cos\theta}

Explanation :

:\implies\sf\:|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|

:\implies\sf\:\sqrt{A^2+B^2+2AB\cos\theta}=\sqrt{A^2+B^2-2AB\cos\theta}

:\implies\sf\:2AB\cos\theta=-2AB\cos\theta

:\implies\sf\:4AB\cos\theta=0

:\implies\sf\:\cos\theta=0

:\implies\sf\:\theta=\cos^{-1}(0)

:\implies\underline{\boxed{\bf{\theta=90\degree}}}

Hence Proved !!


BloomingBud: very nice
Anonymous: Thank you :D
Similar questions