show that the numbers n, n+2, n+4 only one of them are divisible by 3
Answers
Here is your answer,
We applied Euclid Division algorithm on n and 3.
a = bq +r on putting a = n and b = 3
n = 3q +r , 0i.e n = 3q -------- (1),n = 3q +1 --------- (2), n = 3q +2 -----------(3)
n = 3q is divisible by 3
or n +2 = 3q +1+2 = 3q +3 also divisible by 3
or n +4 = 3q + 2 +4 = 3q + 6 is also divisible by 3
Hence n, n+2 , n+4 are divisible by 3.
Hope it helps you!
:
Mark Me As Brainliest And Thank Me If The Answer Is Useful.
-- :
We know that any positive integer of the form 3q or, 3q+1 or 3q+2 for some integer q and one and only one of these possibilities can occur.
So, we have following cases:
Case-I: When n=3q
In this case, we have
n=3q, which is divisible by 3
Now, n=3q
n+2=3q+2
n+2 leaves remainder 2 when divided by 3
Again, n=3q
n+4=3q+4=3(q+1)+1
n+4 leaves remainder 1 when divided by 3
n+4 is not divisible by 3.
Thus, n is divisible by 3 but n+2 and n+4 are not divisible by 3.
Case-II: when n=3q+1
In this case, we have
n=3q+1,
n leaves remainder 1 when divided by 3.
n is divisible by 3
Now, n=3q+1
n+2=(3q+1)+2=3(q+1)
n+2 is divisible by 3.
Again, n=3q+1
n+4=3q+1+4=3q+5=3(q+1)+2
n+4 leaves remainder 2 when divided by 3
n+4 is not divisible by 3.
Thus, n+2 is divisible by 3 but n and n+4 are not divisible by 3.
Case-III: When n=3q+2
In this case, we havE
n=3q+2
n leaves remainder 2 when divided by 3.
n is not divisible by 3.
Now, n=3q+2
n+2=3q+2+2=3(q+1)+1
n+2 leaves remainder 1 when divided by 3
n+2 is not divisible by 3.
Again, n=3q+2
n+4=3q+2+4=3(q+2)
n+4 is divisible by 3.
Hence, n+4 is divisible by 3 but n and n+2 are not divisible by 3.