show that the of any odd integer is of the
form 4q+1 for some inteqerg.
show that 23 is an irrational q
Answers
Correct question:
their should be 2m+1
Let a be any +ve integer
Using Euclid's Division Lemma,
Here, b = 2
For r = 0,
For r = 1,
Hence, only 2m + 1 is the only +ve odd integer.
HOPE THIS HELPS YOU!!!!!!!!
PLEASE MARK IT AS BRAINLIST!!!!!!!!!
#STAY HOME #STAY SAFE✌️✌️
Correct Question :
Show that the of any odd integer is of the form 4q + 1 for some inteqer q.
AnswEr:
- Square of any positive integer is in form of 4q or 4q + 1 , where q is any integer.✔️
Step-By-Step ExPlanation:
Let positive integer a be the any positive integer.
Then, b = 4 .
By division algorithm we know here
0 ≤ r < 4 , So r = 0, 1, 2, 3.
When r = 0
a = 4m
Squaring both side , we get
a² = ( 4m )²
a² = 4 ( 4m²)
a² = 4q , where q = 4m²
When r = 1
a = 4m + 1
squaring both side , we get
a² = ( 4m + 1)²
a² = 16m² + 1 + 8m
a² = 4 ( 4m² + 2m ) + 1
a² = 4q + 1 , where q = 4m² + 2m
When r = 2
a = 4m + 2
Squaring both hand side , we get
a² = ( 4m + 2 )²
a² = 16m² + 4 + 16m
a² = 4 ( 4m² + 4m + 1 )
a² = 4q , Where q = 4m² + 4m + 1
When r = 3
a = 4m + 3
Squaring both hand side , we get
a² = ( 4m + 3)²
a² = 16m² + 9 + 24m
a² = 16m² + 24m + 8 + 1
a² = 4 ( 4m² + 6m + 2) + 1
a² = 4q + 1 , where q = 4m² + 6m + 2
- Hence ,Square of any positive integer is in form of 4q or 4q + 1 , where q is any integer.