Math, asked by haqueaisha32, 1 year ago

Show that the point (-3,-3),(3,3)and( -3√3,3√3) are the vertices of an equilateral triangle

Answers

Answered by MaheswariS
25

\textbf{Given:}

\text{Points are $(-3,-3),(3,3)$ and $(-3\sqrt{3},3\sqrt{3})$}

\textbf{To prove:}

\text{They form an equilateral triangle}

\textbf{Solution:}

\text{Let the given points be}

A(-3,-3),\;B(3,3),\,\text{and}\,C(-3\sqrt{3},3\sqrt{3})

AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

AB=\sqrt{(-3-3)^2+(-3-3)^2}

AB=\sqrt{(-6)^2+(-6)^2}

AB=\sqrt{36+36}

AB=\sqrt{72}

\implies\boxed{AB=6\sqrt{2}}

BC=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

BC=\sqrt{(3+3\sqrt{3})^2+(3-3\sqrt{3})^2}

BC=\sqrt{9+27+18\sqrt{3}+9+27-18\sqrt{3}}

BC=\sqrt{36+36}

BC=\sqrt{72}

\implies\boxed{BC=6\sqrt{2}}

AC=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

AC=\sqrt{(-3+3\sqrt{3})^2+(-3-3\sqrt{3})^2}

AC=\sqrt{9+27-18\sqrt{3}+9+27+18\sqrt{3}}

AC=\sqrt{36+36}

AC=\sqrt{72}

\implies\boxed{AC=6\sqrt{2}}

\implies\,AB=BC=AC

\therefore\textbf{The given points form an equilateral triangle}

Find more:

If two vertices of an equilateral triangle be (0,0) (3,0) find the third vertex

https://brainly.in/question/13160251

Answered by muskanmishra115
6

Step-by-step explanation:

follow me I will definitely give you follow back

Attachments:
Similar questions