show that the point A (0,9),B(-4,-1),C(3,2)are the vertices of a right angled triangle
Answers
S O L U T I O N :
Given :- Vertices of a right angled triangle is A(0,9),B(-4,-1),C(3, 2).
Applying distance formula,
XY = √(x2 - x1)² + (y2 - y1)²
Case (I),
A(0,9) & B(-4 ,-1)
⟶ AB = √(-4 - 0)² + (-1 - 9)²
⟶ AB = √(-4)² + (-10)²
⟶ AB = √16 + 100
⟶ AB = √116___________(1)
Case (II),
B(-4, -1) & C(3 , 2)
⟶ BC = √(3 - (-4))² + (2 - (-1))²
⟶ BC = √(3 + 4)² + (2 + 1)²
⟶ BC = √(7)² + (3)²
⟶ BC = √49 + 9
⟶ BC = √58___________(2)
Case (III),
A(0,9) & C(3 , 2)
⟶ AC = √(3 - 0)² + (2 - 9)²
⟶ AC = √(3)² + (-7)²
⟶ AC = √9 + 49
⟶ AC = √58_____________(3)
From equation (1),
⟶ AB² = (√116)² = 116
⟶ AB² = 116_____________(4)
From equation (2) & (3),
⟶ AC² + BC² = (√58)² + (√58)²
⟶ AC² + BC² = 58 + 58
⟶ AC² + BC² = 116___________(5)
From equation (4) & (5),
⟶ AB² = AC² + BC²
By using converse of Pythagoras theorem,
⟶ ΔACB is right angled triangle.
Therefore,
- The point A(0,9) , B(-4,-1) , C(3,2) are the vertices of a right angled triangle.