Math, asked by Atchitha06, 10 months ago

show that the point a(1,10) b(5,3) c(2,7) d(-2,4) are the vertices of a rhombus

Answers

Answered by kalinayak10
0

please check your question your question is wrong I think

Answered by Anonymous
8

\huge{\green{\boxed{\boxed{\boxed{\purple{\underline{\pink{NIKHILAYESH}}}}}}}}}

<body bgcolor="silver">

<font color="purple">

╔══∘◦✯♔✯◦∘══╗

{\bf{\green{HELLO}}}

╚══∘◦✯♔✯◦∘══╝

^__^, a(1,0),b(5,3),c(2,7),d(-2,4)

Distance

ab=root(5-1)^2+(3-0)^2

ab=root(4)^2+(3)^2

ab=root16+9

ab =  \sqrt{25}

ab=5

bc=root(2-5)^2+(7-3)^2

bc=root(-3)^2+(4)^2

bc=root9+16

bc=root25

bc=5

cd=root(-2-2)^2+(4-7)^2

cd=root(-4)^2+(-3)^2

cd=root16+9

cd=root25

cd=5

ad=root(1+2)^2+(0-4)^2

ad=root(3)^2+16

ad=root9+16

ad=5

ac=root(2-1)^2+(7-0)^2

ac=root(1)^2+(7)^2

ac=root1+49

ac=root50

ac = 5 \sqrt{2}

bd=root(-2-5)^2+(4-3)^2

bd=root(-7)^2+1

bd=root49+1

bd=root50

bd = 5 \sqrt{2}

......... ac=bd......

Therefore abcd is a rhombus

(1,10) b(5,3) c(2,7) d(-2,4) are the vertices of a rhombus

Similar questions