show that the point a(1,10) b(5,3) c(2,7) d(-2,4) are the vertices of a rhombus
Answers
Answered by
0
please check your question your question is wrong I think
Answered by
8
╔══∘◦✯♔✯◦∘══╗
╚══∘◦✯♔✯◦∘══╝
^__^, a(1,0),b(5,3),c(2,7),d(-2,4)
Distance
ab=root(5-1)^2+(3-0)^2
ab=root(4)^2+(3)^2
ab=root16+9
ab=5
bc=root(2-5)^2+(7-3)^2
bc=root(-3)^2+(4)^2
bc=root9+16
bc=root25
bc=5
cd=root(-2-2)^2+(4-7)^2
cd=root(-4)^2+(-3)^2
cd=root16+9
cd=root25
cd=5
ad=root(1+2)^2+(0-4)^2
ad=root(3)^2+16
ad=root9+16
ad=5
ac=root(2-1)^2+(7-0)^2
ac=root(1)^2+(7)^2
ac=root1+49
ac=root50
bd=root(-2-5)^2+(4-3)^2
bd=root(-7)^2+1
bd=root49+1
bd=root50
......... ac=bd......
Therefore abcd is a rhombus
(1,10) b(5,3) c(2,7) d(-2,4) are the vertices of a rhombus
Similar questions
Math,
5 months ago
Math,
5 months ago
Physics,
11 months ago
Social Sciences,
11 months ago
Social Sciences,
1 year ago