Math, asked by rasheedpokkath5814, 11 months ago

Show that the point A(3,-1) B(5,-1) and C(3,-3) are the vertices of a right angled isosceles triangel

Answers

Answered by Anonymous
8

\huge{\underline{\underline {\bf{\red{AnswEr:-}}}}}

\large\bold{\underline{\sf{\pink{GivEn:-}}}}

  • Coordinates of A :- (3,-1)
  • Coordinates of B :- (5,-1)
  • Coordinates of C :- (3,-3)

\implies Using Distance formula to find all the sides:-

Formula :-  \sqrt{( \sf x_2 - \sf x_1 )^2 + ( \sf y_2 - \sf y_1 )^2}

Now, AB :-

  • =  \sqrt{( 3 - 5)^2 + ( -1 + 1 )^2}

 \ \ \ \ \ \ \ \ \ \ \ = 2 units

Now, BC :-

  • =  \sqrt{( 5 - 3)^2 + ( -1 + 3 )^2}

 \ \ \ \ \ \ \ \ \ \ \ =  \sqrt{(4 + 4}

 \ \ \ \ \ \ \ \ \ \ \ = 2 \sqrt{2}

Now, CA :-

  •  \sqrt{( 3- 3)^2 + ( -3 + 1 )^2}

 \ \ \ \ \ \ \ \ \ \ \ =  2 units

\implies Using Pythagoras theorem to show that they are vertices of a right angle isosceles triangle.

 (BC)^2 = (AB)^2 + (CA)^2

Now,

  •  (BC)^2 = (2 \sqrt{2})^2
  • = 8

And,

  • (AB)^2 + (CA)^2 = 2^2 + 2^2
  • = 8

Therefore,

 (BC)^2 = (AB)^2 + (CA)^2

\large\bold{\underline{\sf{\red{Hence, \;  these \; are \; the \; vertices \; of \; right \; angled \; isosceles \; triangle.}}}}

_________________________________________

Attachments:

Anonymous: Noice! ♥️
Similar questions